Solve for x
x=-1
Graph
Share
Copied to clipboard
21\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+8\right)+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Variable x cannot be equal to any of the values -8,-5,-2,1 since division by zero is not defined. Multiply both sides of the equation by 21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right), the least common multiple of x^{2}+x-2,x^{2}+7x+10,x^{2}+13x+40,3x-3,21.
\left(21x+105\right)\left(x+8\right)+21\left(x-1\right)\left(x+8\right)+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Use the distributive property to multiply 21 by x+5.
21x^{2}+273x+840+21\left(x-1\right)\left(x+8\right)+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Use the distributive property to multiply 21x+105 by x+8 and combine like terms.
21x^{2}+273x+840+\left(21x-21\right)\left(x+8\right)+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Use the distributive property to multiply 21 by x-1.
21x^{2}+273x+840+21x^{2}+147x-168+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Use the distributive property to multiply 21x-21 by x+8 and combine like terms.
42x^{2}+273x+840+147x-168+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Combine 21x^{2} and 21x^{2} to get 42x^{2}.
42x^{2}+420x+840-168+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Combine 273x and 147x to get 420x.
42x^{2}+420x+672+21\left(x+2\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Subtract 168 from 840 to get 672.
42x^{2}+420x+672+\left(21x+42\right)\left(x-1\right)=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Use the distributive property to multiply 21 by x+2.
42x^{2}+420x+672+21x^{2}+21x-42=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Use the distributive property to multiply 21x+42 by x-1 and combine like terms.
63x^{2}+420x+672+21x-42=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Combine 42x^{2} and 21x^{2} to get 63x^{2}.
63x^{2}+441x+672-42=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Combine 420x and 21x to get 441x.
63x^{2}+441x+630=7\left(x+2\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Subtract 42 from 672 to get 630.
63x^{2}+441x+630=\left(7x+14\right)\left(x+5\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Use the distributive property to multiply 7 by x+2.
63x^{2}+441x+630=\left(7x^{2}+49x+70\right)\left(x+8\right)+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Use the distributive property to multiply 7x+14 by x+5 and combine like terms.
63x^{2}+441x+630=7x^{3}+105x^{2}+462x+560+21\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)\left(-\frac{1}{21}\right)
Use the distributive property to multiply 7x^{2}+49x+70 by x+8 and combine like terms.
63x^{2}+441x+630=7x^{3}+105x^{2}+462x+560-\left(x-1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)
Multiply 21 and -\frac{1}{21} to get -1.
63x^{2}+441x+630=7x^{3}+105x^{2}+462x+560+\left(-x+1\right)\left(x+2\right)\left(x+5\right)\left(x+8\right)
Use the distributive property to multiply -1 by x-1.
63x^{2}+441x+630=7x^{3}+105x^{2}+462x+560+\left(-x^{2}-x+2\right)\left(x+5\right)\left(x+8\right)
Use the distributive property to multiply -x+1 by x+2 and combine like terms.
63x^{2}+441x+630=7x^{3}+105x^{2}+462x+560+\left(-x^{3}-6x^{2}-3x+10\right)\left(x+8\right)
Use the distributive property to multiply -x^{2}-x+2 by x+5 and combine like terms.
63x^{2}+441x+630=7x^{3}+105x^{2}+462x+560-x^{4}-14x^{3}-51x^{2}-14x+80
Use the distributive property to multiply -x^{3}-6x^{2}-3x+10 by x+8 and combine like terms.
63x^{2}+441x+630=-7x^{3}+105x^{2}+462x+560-x^{4}-51x^{2}-14x+80
Combine 7x^{3} and -14x^{3} to get -7x^{3}.
63x^{2}+441x+630=-7x^{3}+54x^{2}+462x+560-x^{4}-14x+80
Combine 105x^{2} and -51x^{2} to get 54x^{2}.
63x^{2}+441x+630=-7x^{3}+54x^{2}+448x+560-x^{4}+80
Combine 462x and -14x to get 448x.
63x^{2}+441x+630=-7x^{3}+54x^{2}+448x+640-x^{4}
Add 560 and 80 to get 640.
63x^{2}+441x+630+7x^{3}=54x^{2}+448x+640-x^{4}
Add 7x^{3} to both sides.
63x^{2}+441x+630+7x^{3}-54x^{2}=448x+640-x^{4}
Subtract 54x^{2} from both sides.
9x^{2}+441x+630+7x^{3}=448x+640-x^{4}
Combine 63x^{2} and -54x^{2} to get 9x^{2}.
9x^{2}+441x+630+7x^{3}-448x=640-x^{4}
Subtract 448x from both sides.
9x^{2}-7x+630+7x^{3}=640-x^{4}
Combine 441x and -448x to get -7x.
9x^{2}-7x+630+7x^{3}-640=-x^{4}
Subtract 640 from both sides.
9x^{2}-7x-10+7x^{3}=-x^{4}
Subtract 640 from 630 to get -10.
9x^{2}-7x-10+7x^{3}+x^{4}=0
Add x^{4} to both sides.
x^{4}+7x^{3}+9x^{2}-7x-10=0
Rearrange the equation to put it in standard form. Place the terms in order from highest to lowest power.
±10,±5,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -10 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{3}+8x^{2}+17x+10=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{4}+7x^{3}+9x^{2}-7x-10 by x-1 to get x^{3}+8x^{2}+17x+10. Solve the equation where the result equals to 0.
±10,±5,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 10 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}+7x+10=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}+8x^{2}+17x+10 by x+1 to get x^{2}+7x+10. Solve the equation where the result equals to 0.
x=\frac{-7±\sqrt{7^{2}-4\times 1\times 10}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 7 for b, and 10 for c in the quadratic formula.
x=\frac{-7±3}{2}
Do the calculations.
x=-5 x=-2
Solve the equation x^{2}+7x+10=0 when ± is plus and when ± is minus.
x=-1
Remove the values that the variable cannot be equal to.
x=1 x=-1 x=-5 x=-2
List all found solutions.
x=-1
Variable x cannot be equal to any of the values 1,-5,-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}