Solve for x
x=\sqrt{59}+9\approx 16.681145748
x=9-\sqrt{59}\approx 1.318854252
Graph
Share
Copied to clipboard
\left(x-6\right)\left(x-2\right)+\left(x-6\right)\left(x-1\right)=\left(x-1\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,1,2,6 since division by zero is not defined. Multiply both sides of the equation by \left(x-6\right)\left(x-2\right)\left(x-1\right)\left(x+4\right), the least common multiple of x^{2}+3x-4,x^{2}+2x-8,x^{2}-8x+12.
x^{2}-8x+12+\left(x-6\right)\left(x-1\right)=\left(x-1\right)\left(x+4\right)
Use the distributive property to multiply x-6 by x-2 and combine like terms.
x^{2}-8x+12+x^{2}-7x+6=\left(x-1\right)\left(x+4\right)
Use the distributive property to multiply x-6 by x-1 and combine like terms.
2x^{2}-8x+12-7x+6=\left(x-1\right)\left(x+4\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-15x+12+6=\left(x-1\right)\left(x+4\right)
Combine -8x and -7x to get -15x.
2x^{2}-15x+18=\left(x-1\right)\left(x+4\right)
Add 12 and 6 to get 18.
2x^{2}-15x+18=x^{2}+3x-4
Use the distributive property to multiply x-1 by x+4 and combine like terms.
2x^{2}-15x+18-x^{2}=3x-4
Subtract x^{2} from both sides.
x^{2}-15x+18=3x-4
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-15x+18-3x=-4
Subtract 3x from both sides.
x^{2}-18x+18=-4
Combine -15x and -3x to get -18x.
x^{2}-18x+18+4=0
Add 4 to both sides.
x^{2}-18x+22=0
Add 18 and 4 to get 22.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 22}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -18 for b, and 22 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 22}}{2}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-88}}{2}
Multiply -4 times 22.
x=\frac{-\left(-18\right)±\sqrt{236}}{2}
Add 324 to -88.
x=\frac{-\left(-18\right)±2\sqrt{59}}{2}
Take the square root of 236.
x=\frac{18±2\sqrt{59}}{2}
The opposite of -18 is 18.
x=\frac{2\sqrt{59}+18}{2}
Now solve the equation x=\frac{18±2\sqrt{59}}{2} when ± is plus. Add 18 to 2\sqrt{59}.
x=\sqrt{59}+9
Divide 18+2\sqrt{59} by 2.
x=\frac{18-2\sqrt{59}}{2}
Now solve the equation x=\frac{18±2\sqrt{59}}{2} when ± is minus. Subtract 2\sqrt{59} from 18.
x=9-\sqrt{59}
Divide 18-2\sqrt{59} by 2.
x=\sqrt{59}+9 x=9-\sqrt{59}
The equation is now solved.
\left(x-6\right)\left(x-2\right)+\left(x-6\right)\left(x-1\right)=\left(x-1\right)\left(x+4\right)
Variable x cannot be equal to any of the values -4,1,2,6 since division by zero is not defined. Multiply both sides of the equation by \left(x-6\right)\left(x-2\right)\left(x-1\right)\left(x+4\right), the least common multiple of x^{2}+3x-4,x^{2}+2x-8,x^{2}-8x+12.
x^{2}-8x+12+\left(x-6\right)\left(x-1\right)=\left(x-1\right)\left(x+4\right)
Use the distributive property to multiply x-6 by x-2 and combine like terms.
x^{2}-8x+12+x^{2}-7x+6=\left(x-1\right)\left(x+4\right)
Use the distributive property to multiply x-6 by x-1 and combine like terms.
2x^{2}-8x+12-7x+6=\left(x-1\right)\left(x+4\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-15x+12+6=\left(x-1\right)\left(x+4\right)
Combine -8x and -7x to get -15x.
2x^{2}-15x+18=\left(x-1\right)\left(x+4\right)
Add 12 and 6 to get 18.
2x^{2}-15x+18=x^{2}+3x-4
Use the distributive property to multiply x-1 by x+4 and combine like terms.
2x^{2}-15x+18-x^{2}=3x-4
Subtract x^{2} from both sides.
x^{2}-15x+18=3x-4
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-15x+18-3x=-4
Subtract 3x from both sides.
x^{2}-18x+18=-4
Combine -15x and -3x to get -18x.
x^{2}-18x=-4-18
Subtract 18 from both sides.
x^{2}-18x=-22
Subtract 18 from -4 to get -22.
x^{2}-18x+\left(-9\right)^{2}=-22+\left(-9\right)^{2}
Divide -18, the coefficient of the x term, by 2 to get -9. Then add the square of -9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-18x+81=-22+81
Square -9.
x^{2}-18x+81=59
Add -22 to 81.
\left(x-9\right)^{2}=59
Factor x^{2}-18x+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-9\right)^{2}}=\sqrt{59}
Take the square root of both sides of the equation.
x-9=\sqrt{59} x-9=-\sqrt{59}
Simplify.
x=\sqrt{59}+9 x=9-\sqrt{59}
Add 9 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}