Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{x-y}{\left(x+y\right)\left(x-y\right)}-\frac{x+y}{\left(x+y\right)\left(x-y\right)}+\frac{2y}{x^{2}+y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+y and x-y is \left(x+y\right)\left(x-y\right). Multiply \frac{1}{x+y} times \frac{x-y}{x-y}. Multiply \frac{1}{x-y} times \frac{x+y}{x+y}.
\frac{x-y-\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{2y}{x^{2}+y^{2}}
Since \frac{x-y}{\left(x+y\right)\left(x-y\right)} and \frac{x+y}{\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x-y-x-y}{\left(x+y\right)\left(x-y\right)}+\frac{2y}{x^{2}+y^{2}}
Do the multiplications in x-y-\left(x+y\right).
\frac{-2y}{\left(x+y\right)\left(x-y\right)}+\frac{2y}{x^{2}+y^{2}}
Combine like terms in x-y-x-y.
\frac{-2y\left(x^{2}+y^{2}\right)}{\left(x+y\right)\left(x-y\right)\left(x^{2}+y^{2}\right)}+\frac{2y\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)\left(x^{2}+y^{2}\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+y\right)\left(x-y\right) and x^{2}+y^{2} is \left(x+y\right)\left(x-y\right)\left(x^{2}+y^{2}\right). Multiply \frac{-2y}{\left(x+y\right)\left(x-y\right)} times \frac{x^{2}+y^{2}}{x^{2}+y^{2}}. Multiply \frac{2y}{x^{2}+y^{2}} times \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}.
\frac{-2y\left(x^{2}+y^{2}\right)+2y\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)\left(x^{2}+y^{2}\right)}
Since \frac{-2y\left(x^{2}+y^{2}\right)}{\left(x+y\right)\left(x-y\right)\left(x^{2}+y^{2}\right)} and \frac{2y\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)\left(x^{2}+y^{2}\right)} have the same denominator, add them by adding their numerators.
\frac{-2yx^{2}-2y^{3}+2yx^{2}-2y^{2}x+2y^{2}x-2y^{3}}{\left(x+y\right)\left(x-y\right)\left(x^{2}+y^{2}\right)}
Do the multiplications in -2y\left(x^{2}+y^{2}\right)+2y\left(x+y\right)\left(x-y\right).
\frac{-4y^{3}}{\left(x+y\right)\left(x-y\right)\left(x^{2}+y^{2}\right)}
Combine like terms in -2yx^{2}-2y^{3}+2yx^{2}-2y^{2}x+2y^{2}x-2y^{3}.
\frac{-4y^{3}}{x^{4}-y^{4}}
Expand \left(x+y\right)\left(x-y\right)\left(x^{2}+y^{2}\right).