Solve for x
x=-17
x=3
Graph
Share
Copied to clipboard
\left(2x-1\right)\left(7x+9\right)+\left(x+3\right)\left(7x+9\right)=\left(2x-1\right)\left(x+3\right)\times 11
Variable x cannot be equal to any of the values -3,-\frac{9}{7},\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-1\right)\left(x+3\right)\left(7x+9\right), the least common multiple of x+3,2x-1,7x+9.
14x^{2}+11x-9+\left(x+3\right)\left(7x+9\right)=\left(2x-1\right)\left(x+3\right)\times 11
Use the distributive property to multiply 2x-1 by 7x+9 and combine like terms.
14x^{2}+11x-9+7x^{2}+30x+27=\left(2x-1\right)\left(x+3\right)\times 11
Use the distributive property to multiply x+3 by 7x+9 and combine like terms.
21x^{2}+11x-9+30x+27=\left(2x-1\right)\left(x+3\right)\times 11
Combine 14x^{2} and 7x^{2} to get 21x^{2}.
21x^{2}+41x-9+27=\left(2x-1\right)\left(x+3\right)\times 11
Combine 11x and 30x to get 41x.
21x^{2}+41x+18=\left(2x-1\right)\left(x+3\right)\times 11
Add -9 and 27 to get 18.
21x^{2}+41x+18=\left(2x^{2}+5x-3\right)\times 11
Use the distributive property to multiply 2x-1 by x+3 and combine like terms.
21x^{2}+41x+18=22x^{2}+55x-33
Use the distributive property to multiply 2x^{2}+5x-3 by 11.
21x^{2}+41x+18-22x^{2}=55x-33
Subtract 22x^{2} from both sides.
-x^{2}+41x+18=55x-33
Combine 21x^{2} and -22x^{2} to get -x^{2}.
-x^{2}+41x+18-55x=-33
Subtract 55x from both sides.
-x^{2}-14x+18=-33
Combine 41x and -55x to get -14x.
-x^{2}-14x+18+33=0
Add 33 to both sides.
-x^{2}-14x+51=0
Add 18 and 33 to get 51.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\left(-1\right)\times 51}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -14 for b, and 51 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\left(-1\right)\times 51}}{2\left(-1\right)}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196+4\times 51}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-14\right)±\sqrt{196+204}}{2\left(-1\right)}
Multiply 4 times 51.
x=\frac{-\left(-14\right)±\sqrt{400}}{2\left(-1\right)}
Add 196 to 204.
x=\frac{-\left(-14\right)±20}{2\left(-1\right)}
Take the square root of 400.
x=\frac{14±20}{2\left(-1\right)}
The opposite of -14 is 14.
x=\frac{14±20}{-2}
Multiply 2 times -1.
x=\frac{34}{-2}
Now solve the equation x=\frac{14±20}{-2} when ± is plus. Add 14 to 20.
x=-17
Divide 34 by -2.
x=-\frac{6}{-2}
Now solve the equation x=\frac{14±20}{-2} when ± is minus. Subtract 20 from 14.
x=3
Divide -6 by -2.
x=-17 x=3
The equation is now solved.
\left(2x-1\right)\left(7x+9\right)+\left(x+3\right)\left(7x+9\right)=\left(2x-1\right)\left(x+3\right)\times 11
Variable x cannot be equal to any of the values -3,-\frac{9}{7},\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-1\right)\left(x+3\right)\left(7x+9\right), the least common multiple of x+3,2x-1,7x+9.
14x^{2}+11x-9+\left(x+3\right)\left(7x+9\right)=\left(2x-1\right)\left(x+3\right)\times 11
Use the distributive property to multiply 2x-1 by 7x+9 and combine like terms.
14x^{2}+11x-9+7x^{2}+30x+27=\left(2x-1\right)\left(x+3\right)\times 11
Use the distributive property to multiply x+3 by 7x+9 and combine like terms.
21x^{2}+11x-9+30x+27=\left(2x-1\right)\left(x+3\right)\times 11
Combine 14x^{2} and 7x^{2} to get 21x^{2}.
21x^{2}+41x-9+27=\left(2x-1\right)\left(x+3\right)\times 11
Combine 11x and 30x to get 41x.
21x^{2}+41x+18=\left(2x-1\right)\left(x+3\right)\times 11
Add -9 and 27 to get 18.
21x^{2}+41x+18=\left(2x^{2}+5x-3\right)\times 11
Use the distributive property to multiply 2x-1 by x+3 and combine like terms.
21x^{2}+41x+18=22x^{2}+55x-33
Use the distributive property to multiply 2x^{2}+5x-3 by 11.
21x^{2}+41x+18-22x^{2}=55x-33
Subtract 22x^{2} from both sides.
-x^{2}+41x+18=55x-33
Combine 21x^{2} and -22x^{2} to get -x^{2}.
-x^{2}+41x+18-55x=-33
Subtract 55x from both sides.
-x^{2}-14x+18=-33
Combine 41x and -55x to get -14x.
-x^{2}-14x=-33-18
Subtract 18 from both sides.
-x^{2}-14x=-51
Subtract 18 from -33 to get -51.
\frac{-x^{2}-14x}{-1}=-\frac{51}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{14}{-1}\right)x=-\frac{51}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+14x=-\frac{51}{-1}
Divide -14 by -1.
x^{2}+14x=51
Divide -51 by -1.
x^{2}+14x+7^{2}=51+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+14x+49=51+49
Square 7.
x^{2}+14x+49=100
Add 51 to 49.
\left(x+7\right)^{2}=100
Factor x^{2}+14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{100}
Take the square root of both sides of the equation.
x+7=10 x+7=-10
Simplify.
x=3 x=-17
Subtract 7 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}