Solve for x
x = -\frac{11}{2} = -5\frac{1}{2} = -5.5
Graph
Share
Copied to clipboard
x-5=\left(x+2\right)\times 3
Variable x cannot be equal to any of the values -2,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x+2\right), the least common multiple of x+2,x-5.
x-5=3x+6
Use the distributive property to multiply x+2 by 3.
x-5-3x=6
Subtract 3x from both sides.
-2x-5=6
Combine x and -3x to get -2x.
-2x=6+5
Add 5 to both sides.
-2x=11
Add 6 and 5 to get 11.
x=\frac{11}{-2}
Divide both sides by -2.
x=-\frac{11}{2}
Fraction \frac{11}{-2} can be rewritten as -\frac{11}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}