Solve for d
d=-\frac{1}{\left(x+2\right)\left(x+3\right)}
x\neq -2\text{ and }x\neq -3
Solve for x (complex solution)
x=\frac{\sqrt{d^{2}-4d}}{2d}-\frac{5}{2}
x=-\frac{\sqrt{d^{2}-4d}}{2d}-\frac{5}{2}\text{, }d\neq 0
Solve for x
x=\frac{\sqrt{d^{2}-4d}}{2d}-\frac{5}{2}
x=-\frac{\sqrt{d^{2}-4d}}{2d}-\frac{5}{2}\text{, }d<0\text{ or }d\geq 4
Graph
Share
Copied to clipboard
x+3+\left(x+2\right)\left(x+3\right)d=x+2
Multiply both sides of the equation by \left(x+2\right)\left(x+3\right), the least common multiple of x+2,x+3.
x+3+\left(x^{2}+5x+6\right)d=x+2
Use the distributive property to multiply x+2 by x+3 and combine like terms.
x+3+x^{2}d+5xd+6d=x+2
Use the distributive property to multiply x^{2}+5x+6 by d.
3+x^{2}d+5xd+6d=x+2-x
Subtract x from both sides.
3+x^{2}d+5xd+6d=2
Combine x and -x to get 0.
x^{2}d+5xd+6d=2-3
Subtract 3 from both sides.
x^{2}d+5xd+6d=-1
Subtract 3 from 2 to get -1.
\left(x^{2}+5x+6\right)d=-1
Combine all terms containing d.
\frac{\left(x^{2}+5x+6\right)d}{x^{2}+5x+6}=-\frac{1}{x^{2}+5x+6}
Divide both sides by x^{2}+5x+6.
d=-\frac{1}{x^{2}+5x+6}
Dividing by x^{2}+5x+6 undoes the multiplication by x^{2}+5x+6.
d=-\frac{1}{\left(x+2\right)\left(x+3\right)}
Divide -1 by x^{2}+5x+6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}