Solve for w
w=-1
Share
Copied to clipboard
1-\left(w+2\right)\times 4=w-2
Variable w cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(w-2\right)\left(w+2\right), the least common multiple of w^{2}-4,w-2,w+2.
1-\left(4w+8\right)=w-2
Use the distributive property to multiply w+2 by 4.
1-4w-8=w-2
To find the opposite of 4w+8, find the opposite of each term.
-7-4w=w-2
Subtract 8 from 1 to get -7.
-7-4w-w=-2
Subtract w from both sides.
-7-5w=-2
Combine -4w and -w to get -5w.
-5w=-2+7
Add 7 to both sides.
-5w=5
Add -2 and 7 to get 5.
w=\frac{5}{-5}
Divide both sides by -5.
w=-1
Divide 5 by -5 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}