Solve for v
v=\frac{wx}{x+w}
w\neq 0\text{ and }x\neq 0\text{ and }w\neq -x
Solve for w
w=\frac{vx}{x-v}
v\neq 0\text{ and }x\neq 0\text{ and }v\neq x
Graph
Share
Copied to clipboard
wx-vx=vw
Variable v cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by vwx, the least common multiple of v,w,x.
wx-vx-vw=0
Subtract vw from both sides.
-vx-vw=-wx
Subtract wx from both sides. Anything subtracted from zero gives its negation.
\left(-x-w\right)v=-wx
Combine all terms containing v.
\frac{\left(-x-w\right)v}{-x-w}=-\frac{wx}{-x-w}
Divide both sides by -x-w.
v=-\frac{wx}{-x-w}
Dividing by -x-w undoes the multiplication by -x-w.
v=\frac{wx}{x+w}
Divide -wx by -x-w.
v=\frac{wx}{x+w}\text{, }v\neq 0
Variable v cannot be equal to 0.
wx-vx=vw
Variable w cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by vwx, the least common multiple of v,w,x.
wx-vx-vw=0
Subtract vw from both sides.
wx-vw=vx
Add vx to both sides. Anything plus zero gives itself.
\left(x-v\right)w=vx
Combine all terms containing w.
\frac{\left(x-v\right)w}{x-v}=\frac{vx}{x-v}
Divide both sides by x-v.
w=\frac{vx}{x-v}
Dividing by x-v undoes the multiplication by x-v.
w=\frac{vx}{x-v}\text{, }w\neq 0
Variable w cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}