Solve for v
v = \frac{37}{3} = 12\frac{1}{3} \approx 12.333333333
Share
Copied to clipboard
v-5+3v+12=7v-30
Variable v cannot be equal to any of the values 0,5 since division by zero is not defined. Multiply both sides of the equation by v\left(v-5\right), the least common multiple of v,v^{2}-5v.
4v-5+12=7v-30
Combine v and 3v to get 4v.
4v+7=7v-30
Add -5 and 12 to get 7.
4v+7-7v=-30
Subtract 7v from both sides.
-3v+7=-30
Combine 4v and -7v to get -3v.
-3v=-30-7
Subtract 7 from both sides.
-3v=-37
Subtract 7 from -30 to get -37.
v=\frac{-37}{-3}
Divide both sides by -3.
v=\frac{37}{3}
Fraction \frac{-37}{-3} can be simplified to \frac{37}{3} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}