Solve for t_2 (complex solution)
t_{2}=-\frac{x^{2}-4}{8-7x}
x\neq -2\text{ and }x\neq 2\text{ and }x\neq \frac{8}{7}
Solve for t_2
t_{2}=-\frac{x^{2}-4}{8-7x}
x\neq \frac{8}{7}\text{ and }|x|\neq 2
Solve for x
x=\frac{\sqrt{49t_{2}^{2}-32t_{2}+16}+7t_{2}}{2}
x=\frac{-\sqrt{49t_{2}^{2}-32t_{2}+16}+7t_{2}}{2}\text{, }t_{2}\neq 0
Graph
Share
Copied to clipboard
x^{2}-4+t_{2}\left(x+2\right)=t_{2}\left(8x-6\right)
Variable t_{2} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by t_{2}\left(x-2\right)\left(x+2\right), the least common multiple of t_{2},x-2,x^{2}-4.
x^{2}-4+t_{2}x+2t_{2}=t_{2}\left(8x-6\right)
Use the distributive property to multiply t_{2} by x+2.
x^{2}-4+t_{2}x+2t_{2}=8t_{2}x-6t_{2}
Use the distributive property to multiply t_{2} by 8x-6.
x^{2}-4+t_{2}x+2t_{2}-8t_{2}x=-6t_{2}
Subtract 8t_{2}x from both sides.
x^{2}-4-7t_{2}x+2t_{2}=-6t_{2}
Combine t_{2}x and -8t_{2}x to get -7t_{2}x.
x^{2}-4-7t_{2}x+2t_{2}+6t_{2}=0
Add 6t_{2} to both sides.
x^{2}-4-7t_{2}x+8t_{2}=0
Combine 2t_{2} and 6t_{2} to get 8t_{2}.
-4-7t_{2}x+8t_{2}=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-7t_{2}x+8t_{2}=-x^{2}+4
Add 4 to both sides.
\left(-7x+8\right)t_{2}=-x^{2}+4
Combine all terms containing t_{2}.
\left(8-7x\right)t_{2}=4-x^{2}
The equation is in standard form.
\frac{\left(8-7x\right)t_{2}}{8-7x}=\frac{4-x^{2}}{8-7x}
Divide both sides by -7x+8.
t_{2}=\frac{4-x^{2}}{8-7x}
Dividing by -7x+8 undoes the multiplication by -7x+8.
t_{2}=\frac{\left(2-x\right)\left(x+2\right)}{8-7x}
Divide -x^{2}+4 by -7x+8.
t_{2}=\frac{\left(2-x\right)\left(x+2\right)}{8-7x}\text{, }t_{2}\neq 0
Variable t_{2} cannot be equal to 0.
x^{2}-4+t_{2}\left(x+2\right)=t_{2}\left(8x-6\right)
Variable t_{2} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by t_{2}\left(x-2\right)\left(x+2\right), the least common multiple of t_{2},x-2,x^{2}-4.
x^{2}-4+t_{2}x+2t_{2}=t_{2}\left(8x-6\right)
Use the distributive property to multiply t_{2} by x+2.
x^{2}-4+t_{2}x+2t_{2}=8t_{2}x-6t_{2}
Use the distributive property to multiply t_{2} by 8x-6.
x^{2}-4+t_{2}x+2t_{2}-8t_{2}x=-6t_{2}
Subtract 8t_{2}x from both sides.
x^{2}-4-7t_{2}x+2t_{2}=-6t_{2}
Combine t_{2}x and -8t_{2}x to get -7t_{2}x.
x^{2}-4-7t_{2}x+2t_{2}+6t_{2}=0
Add 6t_{2} to both sides.
x^{2}-4-7t_{2}x+8t_{2}=0
Combine 2t_{2} and 6t_{2} to get 8t_{2}.
-4-7t_{2}x+8t_{2}=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-7t_{2}x+8t_{2}=-x^{2}+4
Add 4 to both sides.
\left(-7x+8\right)t_{2}=-x^{2}+4
Combine all terms containing t_{2}.
\left(8-7x\right)t_{2}=4-x^{2}
The equation is in standard form.
\frac{\left(8-7x\right)t_{2}}{8-7x}=\frac{4-x^{2}}{8-7x}
Divide both sides by -7x+8.
t_{2}=\frac{4-x^{2}}{8-7x}
Dividing by -7x+8 undoes the multiplication by -7x+8.
t_{2}=\frac{\left(2-x\right)\left(x+2\right)}{8-7x}
Divide -x^{2}+4 by -7x+8.
t_{2}=\frac{\left(2-x\right)\left(x+2\right)}{8-7x}\text{, }t_{2}\neq 0
Variable t_{2} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}