Evaluate
-\frac{t^{3}+9t^{2}+28t+48}{\left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t^{2}+3t+6\right)}
Share
Copied to clipboard
\frac{1}{t^{2}+3t+6}-\frac{5}{\left(t+1\right)\left(t+2\right)}+\frac{3}{t^{2}+4t+3}
Factor t^{2}+3t+2.
\frac{\left(t+1\right)\left(t+2\right)}{\left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right)}-\frac{5\left(t^{2}+3t+6\right)}{\left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right)}+\frac{3}{t^{2}+4t+3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of t^{2}+3t+6 and \left(t+1\right)\left(t+2\right) is \left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right). Multiply \frac{1}{t^{2}+3t+6} times \frac{\left(t+1\right)\left(t+2\right)}{\left(t+1\right)\left(t+2\right)}. Multiply \frac{5}{\left(t+1\right)\left(t+2\right)} times \frac{t^{2}+3t+6}{t^{2}+3t+6}.
\frac{\left(t+1\right)\left(t+2\right)-5\left(t^{2}+3t+6\right)}{\left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right)}+\frac{3}{t^{2}+4t+3}
Since \frac{\left(t+1\right)\left(t+2\right)}{\left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right)} and \frac{5\left(t^{2}+3t+6\right)}{\left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{t^{2}+2t+t+2-5t^{2}-15t-30}{\left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right)}+\frac{3}{t^{2}+4t+3}
Do the multiplications in \left(t+1\right)\left(t+2\right)-5\left(t^{2}+3t+6\right).
\frac{-4t^{2}-12t-28}{\left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right)}+\frac{3}{t^{2}+4t+3}
Combine like terms in t^{2}+2t+t+2-5t^{2}-15t-30.
\frac{-4t^{2}-12t-28}{\left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right)}+\frac{3}{\left(t+1\right)\left(t+3\right)}
Factor t^{2}+4t+3.
\frac{\left(-4t^{2}-12t-28\right)\left(t+3\right)}{\left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t^{2}+3t+6\right)}+\frac{3\left(t+2\right)\left(t^{2}+3t+6\right)}{\left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t^{2}+3t+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right) and \left(t+1\right)\left(t+3\right) is \left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t^{2}+3t+6\right). Multiply \frac{-4t^{2}-12t-28}{\left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right)} times \frac{t+3}{t+3}. Multiply \frac{3}{\left(t+1\right)\left(t+3\right)} times \frac{\left(t+2\right)\left(t^{2}+3t+6\right)}{\left(t+2\right)\left(t^{2}+3t+6\right)}.
\frac{\left(-4t^{2}-12t-28\right)\left(t+3\right)+3\left(t+2\right)\left(t^{2}+3t+6\right)}{\left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t^{2}+3t+6\right)}
Since \frac{\left(-4t^{2}-12t-28\right)\left(t+3\right)}{\left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t^{2}+3t+6\right)} and \frac{3\left(t+2\right)\left(t^{2}+3t+6\right)}{\left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t^{2}+3t+6\right)} have the same denominator, add them by adding their numerators.
\frac{-4t^{3}-12t^{2}-12t^{2}-36t-28t-84+3t^{3}+9t^{2}+18t+6t^{2}+18t+36}{\left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t^{2}+3t+6\right)}
Do the multiplications in \left(-4t^{2}-12t-28\right)\left(t+3\right)+3\left(t+2\right)\left(t^{2}+3t+6\right).
\frac{-t^{3}-9t^{2}-28t-48}{\left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t^{2}+3t+6\right)}
Combine like terms in -4t^{3}-12t^{2}-12t^{2}-36t-28t-84+3t^{3}+9t^{2}+18t+6t^{2}+18t+36.
\frac{-t^{3}-9t^{2}-28t-48}{t^{5}+9t^{4}+35t^{3}+75t^{2}+84t+36}
Expand \left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t^{2}+3t+6\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}