Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{t^{2}+3t+6}-\frac{5}{\left(t+1\right)\left(t+2\right)}+\frac{3}{t^{2}+4t+3}
Factor t^{2}+3t+2.
\frac{\left(t+1\right)\left(t+2\right)}{\left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right)}-\frac{5\left(t^{2}+3t+6\right)}{\left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right)}+\frac{3}{t^{2}+4t+3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of t^{2}+3t+6 and \left(t+1\right)\left(t+2\right) is \left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right). Multiply \frac{1}{t^{2}+3t+6} times \frac{\left(t+1\right)\left(t+2\right)}{\left(t+1\right)\left(t+2\right)}. Multiply \frac{5}{\left(t+1\right)\left(t+2\right)} times \frac{t^{2}+3t+6}{t^{2}+3t+6}.
\frac{\left(t+1\right)\left(t+2\right)-5\left(t^{2}+3t+6\right)}{\left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right)}+\frac{3}{t^{2}+4t+3}
Since \frac{\left(t+1\right)\left(t+2\right)}{\left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right)} and \frac{5\left(t^{2}+3t+6\right)}{\left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{t^{2}+2t+t+2-5t^{2}-15t-30}{\left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right)}+\frac{3}{t^{2}+4t+3}
Do the multiplications in \left(t+1\right)\left(t+2\right)-5\left(t^{2}+3t+6\right).
\frac{-4t^{2}-12t-28}{\left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right)}+\frac{3}{t^{2}+4t+3}
Combine like terms in t^{2}+2t+t+2-5t^{2}-15t-30.
\frac{-4t^{2}-12t-28}{\left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right)}+\frac{3}{\left(t+1\right)\left(t+3\right)}
Factor t^{2}+4t+3.
\frac{\left(-4t^{2}-12t-28\right)\left(t+3\right)}{\left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t^{2}+3t+6\right)}+\frac{3\left(t+2\right)\left(t^{2}+3t+6\right)}{\left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t^{2}+3t+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right) and \left(t+1\right)\left(t+3\right) is \left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t^{2}+3t+6\right). Multiply \frac{-4t^{2}-12t-28}{\left(t+1\right)\left(t+2\right)\left(t^{2}+3t+6\right)} times \frac{t+3}{t+3}. Multiply \frac{3}{\left(t+1\right)\left(t+3\right)} times \frac{\left(t+2\right)\left(t^{2}+3t+6\right)}{\left(t+2\right)\left(t^{2}+3t+6\right)}.
\frac{\left(-4t^{2}-12t-28\right)\left(t+3\right)+3\left(t+2\right)\left(t^{2}+3t+6\right)}{\left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t^{2}+3t+6\right)}
Since \frac{\left(-4t^{2}-12t-28\right)\left(t+3\right)}{\left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t^{2}+3t+6\right)} and \frac{3\left(t+2\right)\left(t^{2}+3t+6\right)}{\left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t^{2}+3t+6\right)} have the same denominator, add them by adding their numerators.
\frac{-4t^{3}-12t^{2}-12t^{2}-36t-28t-84+3t^{3}+9t^{2}+18t+6t^{2}+18t+36}{\left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t^{2}+3t+6\right)}
Do the multiplications in \left(-4t^{2}-12t-28\right)\left(t+3\right)+3\left(t+2\right)\left(t^{2}+3t+6\right).
\frac{-t^{3}-9t^{2}-28t-48}{\left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t^{2}+3t+6\right)}
Combine like terms in -4t^{3}-12t^{2}-12t^{2}-36t-28t-84+3t^{3}+9t^{2}+18t+6t^{2}+18t+36.
\frac{-t^{3}-9t^{2}-28t-48}{t^{5}+9t^{4}+35t^{3}+75t^{2}+84t+36}
Expand \left(t+1\right)\left(t+2\right)\left(t+3\right)\left(t^{2}+3t+6\right).