Solve for r
r=1
Share
Copied to clipboard
4+3+r\left(2\times 4+1\right)=16r
Variable r cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4r, the least common multiple of r,4r,4.
7+r\left(2\times 4+1\right)=16r
Add 4 and 3 to get 7.
7+r\left(8+1\right)=16r
Multiply 2 and 4 to get 8.
7+r\times 9=16r
Add 8 and 1 to get 9.
7+r\times 9-16r=0
Subtract 16r from both sides.
7-7r=0
Combine r\times 9 and -16r to get -7r.
-7r=-7
Subtract 7 from both sides. Anything subtracted from zero gives its negation.
r=\frac{-7}{-7}
Divide both sides by -7.
r=1
Divide -7 by -7 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}