Solve for q
q=-\frac{r}{1-r}
r\neq 0\text{ and }r\neq 1
Solve for r
r=-\frac{q}{1-q}
q\neq 0\text{ and }q\neq 1
Share
Copied to clipboard
q+r=qr
Variable q cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by qr, the least common multiple of r,q.
q+r-qr=0
Subtract qr from both sides.
q-qr=-r
Subtract r from both sides. Anything subtracted from zero gives its negation.
\left(1-r\right)q=-r
Combine all terms containing q.
\frac{\left(1-r\right)q}{1-r}=-\frac{r}{1-r}
Divide both sides by 1-r.
q=-\frac{r}{1-r}
Dividing by 1-r undoes the multiplication by 1-r.
q=-\frac{r}{1-r}\text{, }q\neq 0
Variable q cannot be equal to 0.
q+r=qr
Variable r cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by qr, the least common multiple of r,q.
q+r-qr=0
Subtract qr from both sides.
r-qr=-q
Subtract q from both sides. Anything subtracted from zero gives its negation.
\left(1-q\right)r=-q
Combine all terms containing r.
\frac{\left(1-q\right)r}{1-q}=-\frac{q}{1-q}
Divide both sides by 1-q.
r=-\frac{q}{1-q}
Dividing by 1-q undoes the multiplication by 1-q.
r=-\frac{q}{1-q}\text{, }r\neq 0
Variable r cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}