Solve for h
h=-\frac{1}{2\left(x-4\right)}
x\neq 4
Solve for x
x=4-\frac{1}{2h}
h\neq 0
Graph
Share
Copied to clipboard
-1=\frac{1}{2}x\times 4h+4h\left(-2\right)
Variable h cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4h, the least common multiple of h\left(-4\right),2.
-1=2xh+4h\left(-2\right)
Multiply \frac{1}{2} and 4 to get 2.
-1=2xh-8h
Multiply 4 and -2 to get -8.
2xh-8h=-1
Swap sides so that all variable terms are on the left hand side.
\left(2x-8\right)h=-1
Combine all terms containing h.
\frac{\left(2x-8\right)h}{2x-8}=-\frac{1}{2x-8}
Divide both sides by 2x-8.
h=-\frac{1}{2x-8}
Dividing by 2x-8 undoes the multiplication by 2x-8.
h=-\frac{1}{2\left(x-4\right)}
Divide -1 by 2x-8.
h=-\frac{1}{2\left(x-4\right)}\text{, }h\neq 0
Variable h cannot be equal to 0.
-1=\frac{1}{2}x\times 4h+4h\left(-2\right)
Multiply both sides of the equation by 4h, the least common multiple of h\left(-4\right),2.
-1=2xh+4h\left(-2\right)
Multiply \frac{1}{2} and 4 to get 2.
-1=2xh-8h
Multiply 4 and -2 to get -8.
2xh-8h=-1
Swap sides so that all variable terms are on the left hand side.
2xh=-1+8h
Add 8h to both sides.
2hx=8h-1
The equation is in standard form.
\frac{2hx}{2h}=\frac{8h-1}{2h}
Divide both sides by 2h.
x=\frac{8h-1}{2h}
Dividing by 2h undoes the multiplication by 2h.
x=4-\frac{1}{2h}
Divide -1+8h by 2h.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}