Solve for h
h=\frac{6^{\frac{1}{x}}}{6^{\frac{1}{2x}}+3}
x\neq 0
Solve for x
x=\frac{\ln(6)}{2\left(\ln(\sqrt{h^{2}+12h}+h)-\ln(2)\right)}
h\neq \frac{1}{4}\text{ and }h>0
Graph
Share
Copied to clipboard
1\sqrt[x]{6}=h\sqrt[2x]{6}+h\times 3
Variable h cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by h.
h\sqrt[2x]{6}+h\times 3=1\sqrt[x]{6}
Swap sides so that all variable terms are on the left hand side.
h\sqrt[2x]{6}+3h=\sqrt[x]{6}
Reorder the terms.
\left(\sqrt[2x]{6}+3\right)h=\sqrt[x]{6}
Combine all terms containing h.
\frac{\left(\sqrt[2x]{6}+3\right)h}{\sqrt[2x]{6}+3}=\frac{6^{\frac{1}{x}}}{\sqrt[2x]{6}+3}
Divide both sides by \sqrt[2x]{6}+3.
h=\frac{6^{\frac{1}{x}}}{\sqrt[2x]{6}+3}
Dividing by \sqrt[2x]{6}+3 undoes the multiplication by \sqrt[2x]{6}+3.
h=\frac{6^{\frac{1}{x}}}{6^{\frac{1}{2x}}+3}
Divide 6^{\frac{1}{x}} by \sqrt[2x]{6}+3.
h=\frac{6^{\frac{1}{x}}}{6^{\frac{1}{2x}}+3}\text{, }h\neq 0
Variable h cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}