Solve for b
b=-\frac{fv}{f-v}
v\neq 0\text{ and }f\neq 0\text{ and }f\neq v
Solve for f
f=\frac{bv}{v+b}
b\neq 0\text{ and }v\neq 0\text{ and }v\neq -b
Share
Copied to clipboard
bv=bf+fv
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by bfv, the least common multiple of f,v,b.
bv-bf=fv
Subtract bf from both sides.
\left(v-f\right)b=fv
Combine all terms containing b.
\frac{\left(v-f\right)b}{v-f}=\frac{fv}{v-f}
Divide both sides by v-f.
b=\frac{fv}{v-f}
Dividing by v-f undoes the multiplication by v-f.
b=\frac{fv}{v-f}\text{, }b\neq 0
Variable b cannot be equal to 0.
bv=bf+fv
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by bfv, the least common multiple of f,v,b.
bf+fv=bv
Swap sides so that all variable terms are on the left hand side.
\left(b+v\right)f=bv
Combine all terms containing f.
\left(v+b\right)f=bv
The equation is in standard form.
\frac{\left(v+b\right)f}{v+b}=\frac{bv}{v+b}
Divide both sides by b+v.
f=\frac{bv}{v+b}
Dividing by b+v undoes the multiplication by b+v.
f=\frac{bv}{v+b}\text{, }f\neq 0
Variable f cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}