Solve for c_T
c_{T}=\frac{60}{107}\approx 0.560747664
Share
Copied to clipboard
60=60c_{T}\times \frac{1}{2}+60c_{T}\times \frac{1}{4}+60c_{T}\times \frac{1}{2}+60c_{T}\times \frac{1}{5}+60c_{T}\times \frac{1}{3}
Variable c_{T} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 60c_{T}, the least common multiple of c_{T},2,4,5,3.
60=\frac{60}{2}c_{T}+60c_{T}\times \frac{1}{4}+60c_{T}\times \frac{1}{2}+60c_{T}\times \frac{1}{5}+60c_{T}\times \frac{1}{3}
Multiply 60 and \frac{1}{2} to get \frac{60}{2}.
60=30c_{T}+60c_{T}\times \frac{1}{4}+60c_{T}\times \frac{1}{2}+60c_{T}\times \frac{1}{5}+60c_{T}\times \frac{1}{3}
Divide 60 by 2 to get 30.
60=30c_{T}+\frac{60}{4}c_{T}+60c_{T}\times \frac{1}{2}+60c_{T}\times \frac{1}{5}+60c_{T}\times \frac{1}{3}
Multiply 60 and \frac{1}{4} to get \frac{60}{4}.
60=30c_{T}+15c_{T}+60c_{T}\times \frac{1}{2}+60c_{T}\times \frac{1}{5}+60c_{T}\times \frac{1}{3}
Divide 60 by 4 to get 15.
60=45c_{T}+60c_{T}\times \frac{1}{2}+60c_{T}\times \frac{1}{5}+60c_{T}\times \frac{1}{3}
Combine 30c_{T} and 15c_{T} to get 45c_{T}.
60=45c_{T}+\frac{60}{2}c_{T}+60c_{T}\times \frac{1}{5}+60c_{T}\times \frac{1}{3}
Multiply 60 and \frac{1}{2} to get \frac{60}{2}.
60=45c_{T}+30c_{T}+60c_{T}\times \frac{1}{5}+60c_{T}\times \frac{1}{3}
Divide 60 by 2 to get 30.
60=75c_{T}+60c_{T}\times \frac{1}{5}+60c_{T}\times \frac{1}{3}
Combine 45c_{T} and 30c_{T} to get 75c_{T}.
60=75c_{T}+\frac{60}{5}c_{T}+60c_{T}\times \frac{1}{3}
Multiply 60 and \frac{1}{5} to get \frac{60}{5}.
60=75c_{T}+12c_{T}+60c_{T}\times \frac{1}{3}
Divide 60 by 5 to get 12.
60=87c_{T}+60c_{T}\times \frac{1}{3}
Combine 75c_{T} and 12c_{T} to get 87c_{T}.
60=87c_{T}+\frac{60}{3}c_{T}
Multiply 60 and \frac{1}{3} to get \frac{60}{3}.
60=87c_{T}+20c_{T}
Divide 60 by 3 to get 20.
60=107c_{T}
Combine 87c_{T} and 20c_{T} to get 107c_{T}.
107c_{T}=60
Swap sides so that all variable terms are on the left hand side.
c_{T}=\frac{60}{107}
Divide both sides by 107.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}