Solve for a
a=-\frac{2\left(3b_{2}+b_{2}b^{2}-b+bb_{2}-b^{2}\right)}{3b_{2}-b-b^{2}}
b_{2}\neq \frac{b\left(b+1\right)}{3}\text{ and }b_{2}\neq 0\text{ and }b\neq -1\text{ and }b\neq 0
Solve for b (complex solution)
b=\frac{\sqrt{-\left(-a+2b_{2}-2\right)\left(12ab_{2}+a+22b_{2}+2\right)}+a-2b_{2}+2}{2\left(-a+2b_{2}-2\right)}
b=\frac{-\sqrt{-\left(-a+2b_{2}-2\right)\left(12ab_{2}+a+22b_{2}+2\right)}+a-2b_{2}+2}{2\left(-a+2b_{2}-2\right)}\text{, }a\neq -2\text{ and }b_{2}\neq 0\text{ and }b_{2}\neq \frac{a}{2}+1
Share
Copied to clipboard
b\left(a+2\right)\left(b+1\right)-bb_{2}\left(b+1\right)\times 2=b_{2}\left(a+2\right)\times 3
Variable a cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by bb_{2}\left(a+2\right)\left(b+1\right), the least common multiple of b_{2},a+2,b+b^{2}.
\left(ba+2b\right)\left(b+1\right)-bb_{2}\left(b+1\right)\times 2=b_{2}\left(a+2\right)\times 3
Use the distributive property to multiply b by a+2.
ab^{2}+ba+2b^{2}+2b-bb_{2}\left(b+1\right)\times 2=b_{2}\left(a+2\right)\times 3
Use the distributive property to multiply ba+2b by b+1.
ab^{2}+ba+2b^{2}+2b-\left(b_{2}b^{2}+bb_{2}\right)\times 2=b_{2}\left(a+2\right)\times 3
Use the distributive property to multiply bb_{2} by b+1.
ab^{2}+ba+2b^{2}+2b-\left(2b_{2}b^{2}+2bb_{2}\right)=b_{2}\left(a+2\right)\times 3
Use the distributive property to multiply b_{2}b^{2}+bb_{2} by 2.
ab^{2}+ba+2b^{2}+2b-2b_{2}b^{2}-2bb_{2}=b_{2}\left(a+2\right)\times 3
To find the opposite of 2b_{2}b^{2}+2bb_{2}, find the opposite of each term.
ab^{2}+ba+2b^{2}+2b-2b_{2}b^{2}-2bb_{2}=\left(b_{2}a+2b_{2}\right)\times 3
Use the distributive property to multiply b_{2} by a+2.
ab^{2}+ba+2b^{2}+2b-2b_{2}b^{2}-2bb_{2}=3b_{2}a+6b_{2}
Use the distributive property to multiply b_{2}a+2b_{2} by 3.
ab^{2}+ba+2b^{2}+2b-2b_{2}b^{2}-2bb_{2}-3b_{2}a=6b_{2}
Subtract 3b_{2}a from both sides.
ab^{2}+ba+2b-2b_{2}b^{2}-2bb_{2}-3b_{2}a=6b_{2}-2b^{2}
Subtract 2b^{2} from both sides.
ab^{2}+ba-2b_{2}b^{2}-2bb_{2}-3b_{2}a=6b_{2}-2b^{2}-2b
Subtract 2b from both sides.
ab^{2}+ba-2bb_{2}-3b_{2}a=6b_{2}-2b^{2}-2b+2b_{2}b^{2}
Add 2b_{2}b^{2} to both sides.
ab^{2}+ba-3b_{2}a=6b_{2}-2b^{2}-2b+2b_{2}b^{2}+2bb_{2}
Add 2bb_{2} to both sides.
\left(b^{2}+b-3b_{2}\right)a=6b_{2}-2b^{2}-2b+2b_{2}b^{2}+2bb_{2}
Combine all terms containing a.
\left(b^{2}+b-3b_{2}\right)a=6b_{2}+2b_{2}b^{2}-2b+2bb_{2}-2b^{2}
The equation is in standard form.
\frac{\left(b^{2}+b-3b_{2}\right)a}{b^{2}+b-3b_{2}}=\frac{6b_{2}+2b_{2}b^{2}-2b+2bb_{2}-2b^{2}}{b^{2}+b-3b_{2}}
Divide both sides by b+b^{2}-3b_{2}.
a=\frac{6b_{2}+2b_{2}b^{2}-2b+2bb_{2}-2b^{2}}{b^{2}+b-3b_{2}}
Dividing by b+b^{2}-3b_{2} undoes the multiplication by b+b^{2}-3b_{2}.
a=\frac{2\left(3b_{2}+b_{2}b^{2}-b+bb_{2}-b^{2}\right)}{b^{2}+b-3b_{2}}
Divide -2b^{2}+2bb_{2}-2b+2b_{2}b^{2}+6b_{2} by b+b^{2}-3b_{2}.
a=\frac{2\left(3b_{2}+b_{2}b^{2}-b+bb_{2}-b^{2}\right)}{b^{2}+b-3b_{2}}\text{, }a\neq -2
Variable a cannot be equal to -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}