Solve for b
b=\frac{x}{6}
x\neq 0
Solve for x
x=6b
b\neq 0
Graph
Share
Copied to clipboard
1x+b\left(-2\right)=4b
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b.
1x+b\left(-2\right)-4b=0
Subtract 4b from both sides.
1x-6b=0
Combine b\left(-2\right) and -4b to get -6b.
-6b=-x
Subtract 1x from both sides. Anything subtracted from zero gives its negation.
\frac{-6b}{-6}=-\frac{x}{-6}
Divide both sides by -6.
b=-\frac{x}{-6}
Dividing by -6 undoes the multiplication by -6.
b=\frac{x}{6}
Divide -x by -6.
b=\frac{x}{6}\text{, }b\neq 0
Variable b cannot be equal to 0.
1x+b\left(-2\right)=4b
Multiply both sides of the equation by b.
1x=4b-b\left(-2\right)
Subtract b\left(-2\right) from both sides.
1x=6b
Combine 4b and -b\left(-2\right) to get 6b.
x=6b
Reorder the terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}