Solve for b
b=\sqrt{3}\approx 1.732050808
b=-\sqrt{3}\approx -1.732050808
Share
Copied to clipboard
4b^{2}+\left(b^{2}+1\right)\times 9=4b^{2}\left(b^{2}+1\right)
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4b^{2}\left(b^{2}+1\right), the least common multiple of b^{2}+1,4b^{2}.
4b^{2}+9b^{2}+9=4b^{2}\left(b^{2}+1\right)
Use the distributive property to multiply b^{2}+1 by 9.
13b^{2}+9=4b^{2}\left(b^{2}+1\right)
Combine 4b^{2} and 9b^{2} to get 13b^{2}.
13b^{2}+9=4b^{4}+4b^{2}
Use the distributive property to multiply 4b^{2} by b^{2}+1.
13b^{2}+9-4b^{4}=4b^{2}
Subtract 4b^{4} from both sides.
13b^{2}+9-4b^{4}-4b^{2}=0
Subtract 4b^{2} from both sides.
9b^{2}+9-4b^{4}=0
Combine 13b^{2} and -4b^{2} to get 9b^{2}.
-4t^{2}+9t+9=0
Substitute t for b^{2}.
t=\frac{-9±\sqrt{9^{2}-4\left(-4\right)\times 9}}{-4\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -4 for a, 9 for b, and 9 for c in the quadratic formula.
t=\frac{-9±15}{-8}
Do the calculations.
t=-\frac{3}{4} t=3
Solve the equation t=\frac{-9±15}{-8} when ± is plus and when ± is minus.
b=\sqrt{3} b=-\sqrt{3}
Since b=t^{2}, the solutions are obtained by evaluating b=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}