Solve for a_2
a_{2}=-\frac{8a_{4}}{8-5a_{4}}
a_{4}\neq 0\text{ and }a_{4}\neq \frac{8}{5}
Solve for a_4
a_{4}=-\frac{8a_{2}}{8-5a_{2}}
a_{2}\neq 0\text{ and }a_{2}\neq \frac{8}{5}
Share
Copied to clipboard
8a_{4}+8a_{2}a_{4}\times \frac{1}{4}+8a_{2}=7a_{2}a_{4}
Variable a_{2} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 8a_{2}a_{4}, the least common multiple of a_{2},4,a_{4},8.
8a_{4}+2a_{2}a_{4}+8a_{2}=7a_{2}a_{4}
Multiply 8 and \frac{1}{4} to get 2.
8a_{4}+2a_{2}a_{4}+8a_{2}-7a_{2}a_{4}=0
Subtract 7a_{2}a_{4} from both sides.
8a_{4}-5a_{2}a_{4}+8a_{2}=0
Combine 2a_{2}a_{4} and -7a_{2}a_{4} to get -5a_{2}a_{4}.
-5a_{2}a_{4}+8a_{2}=-8a_{4}
Subtract 8a_{4} from both sides. Anything subtracted from zero gives its negation.
\left(-5a_{4}+8\right)a_{2}=-8a_{4}
Combine all terms containing a_{2}.
\left(8-5a_{4}\right)a_{2}=-8a_{4}
The equation is in standard form.
\frac{\left(8-5a_{4}\right)a_{2}}{8-5a_{4}}=-\frac{8a_{4}}{8-5a_{4}}
Divide both sides by 8-5a_{4}.
a_{2}=-\frac{8a_{4}}{8-5a_{4}}
Dividing by 8-5a_{4} undoes the multiplication by 8-5a_{4}.
a_{2}=-\frac{8a_{4}}{8-5a_{4}}\text{, }a_{2}\neq 0
Variable a_{2} cannot be equal to 0.
8a_{4}+8a_{2}a_{4}\times \frac{1}{4}+8a_{2}=7a_{2}a_{4}
Variable a_{4} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 8a_{2}a_{4}, the least common multiple of a_{2},4,a_{4},8.
8a_{4}+2a_{2}a_{4}+8a_{2}=7a_{2}a_{4}
Multiply 8 and \frac{1}{4} to get 2.
8a_{4}+2a_{2}a_{4}+8a_{2}-7a_{2}a_{4}=0
Subtract 7a_{2}a_{4} from both sides.
8a_{4}-5a_{2}a_{4}+8a_{2}=0
Combine 2a_{2}a_{4} and -7a_{2}a_{4} to get -5a_{2}a_{4}.
8a_{4}-5a_{2}a_{4}=-8a_{2}
Subtract 8a_{2} from both sides. Anything subtracted from zero gives its negation.
\left(8-5a_{2}\right)a_{4}=-8a_{2}
Combine all terms containing a_{4}.
\frac{\left(8-5a_{2}\right)a_{4}}{8-5a_{2}}=-\frac{8a_{2}}{8-5a_{2}}
Divide both sides by 8-5a_{2}.
a_{4}=-\frac{8a_{2}}{8-5a_{2}}
Dividing by 8-5a_{2} undoes the multiplication by 8-5a_{2}.
a_{4}=-\frac{8a_{2}}{8-5a_{2}}\text{, }a_{4}\neq 0
Variable a_{4} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}