Evaluate
\frac{6}{a\left(a+2\right)\left(a^{2}-1\right)}
Differentiate w.r.t. a
\frac{12\left(2a+1\right)\left(1-a-a^{2}\right)}{\left(a\left(a+2\right)\left(a^{2}-1\right)\right)^{2}}
Share
Copied to clipboard
\frac{a}{a\left(a-1\right)}-\frac{3\left(a-1\right)}{a\left(a-1\right)}+\frac{3}{a+1}-\frac{1}{a+2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and a is a\left(a-1\right). Multiply \frac{1}{a-1} times \frac{a}{a}. Multiply \frac{3}{a} times \frac{a-1}{a-1}.
\frac{a-3\left(a-1\right)}{a\left(a-1\right)}+\frac{3}{a+1}-\frac{1}{a+2}
Since \frac{a}{a\left(a-1\right)} and \frac{3\left(a-1\right)}{a\left(a-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a-3a+3}{a\left(a-1\right)}+\frac{3}{a+1}-\frac{1}{a+2}
Do the multiplications in a-3\left(a-1\right).
\frac{-2a+3}{a\left(a-1\right)}+\frac{3}{a+1}-\frac{1}{a+2}
Combine like terms in a-3a+3.
\frac{\left(-2a+3\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}+\frac{3a\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a+2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-1\right) and a+1 is a\left(a-1\right)\left(a+1\right). Multiply \frac{-2a+3}{a\left(a-1\right)} times \frac{a+1}{a+1}. Multiply \frac{3}{a+1} times \frac{a\left(a-1\right)}{a\left(a-1\right)}.
\frac{\left(-2a+3\right)\left(a+1\right)+3a\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a+2}
Since \frac{\left(-2a+3\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} and \frac{3a\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{-2a^{2}-2a+3a+3+3a^{2}-3a}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a+2}
Do the multiplications in \left(-2a+3\right)\left(a+1\right)+3a\left(a-1\right).
\frac{a^{2}-2a+3}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a+2}
Combine like terms in -2a^{2}-2a+3a+3+3a^{2}-3a.
\frac{\left(a^{2}-2a+3\right)\left(a+2\right)}{a\left(a-1\right)\left(a+1\right)\left(a+2\right)}-\frac{a\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)\left(a+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-1\right)\left(a+1\right) and a+2 is a\left(a-1\right)\left(a+1\right)\left(a+2\right). Multiply \frac{a^{2}-2a+3}{a\left(a-1\right)\left(a+1\right)} times \frac{a+2}{a+2}. Multiply \frac{1}{a+2} times \frac{a\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}.
\frac{\left(a^{2}-2a+3\right)\left(a+2\right)-a\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)\left(a+2\right)}
Since \frac{\left(a^{2}-2a+3\right)\left(a+2\right)}{a\left(a-1\right)\left(a+1\right)\left(a+2\right)} and \frac{a\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{3}+2a^{2}-2a^{2}-4a+3a+6-a^{3}-a^{2}+a^{2}+a}{a\left(a-1\right)\left(a+1\right)\left(a+2\right)}
Do the multiplications in \left(a^{2}-2a+3\right)\left(a+2\right)-a\left(a-1\right)\left(a+1\right).
\frac{6}{a\left(a-1\right)\left(a+1\right)\left(a+2\right)}
Combine like terms in a^{3}+2a^{2}-2a^{2}-4a+3a+6-a^{3}-a^{2}+a^{2}+a.
\frac{6}{a^{4}+2a^{3}-a^{2}-2a}
Expand a\left(a-1\right)\left(a+1\right)\left(a+2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}