Solve for a
a=\frac{10}{3b}
b\neq 0
Solve for b
b=\frac{10}{3a}
a\neq 0
Share
Copied to clipboard
20b\times 1\times \frac{1}{b}=\frac{2}{5}\times \frac{3}{4}\times 20ab
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 20ab, the least common multiple of a,b,5,4.
20b\times \frac{1}{b}=\frac{2}{5}\times \frac{3}{4}\times 20ab
Multiply 20 and 1 to get 20.
\frac{20}{b}b=\frac{2}{5}\times \frac{3}{4}\times 20ab
Express 20\times \frac{1}{b} as a single fraction.
\frac{20}{b}b=\frac{3}{10}\times 20ab
Multiply \frac{2}{5} and \frac{3}{4} to get \frac{3}{10}.
\frac{20}{b}b=6ab
Multiply \frac{3}{10} and 20 to get 6.
\frac{20b}{b}=6ab
Express \frac{20}{b}b as a single fraction.
20=6ab
Cancel out b in both numerator and denominator.
6ab=20
Swap sides so that all variable terms are on the left hand side.
6ba=20
The equation is in standard form.
\frac{6ba}{6b}=\frac{20}{6b}
Divide both sides by 6b.
a=\frac{20}{6b}
Dividing by 6b undoes the multiplication by 6b.
a=\frac{10}{3b}
Divide 20 by 6b.
a=\frac{10}{3b}\text{, }a\neq 0
Variable a cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}