Evaluate
\frac{a\left(1-a\right)}{\left(a-3\right)\left(a^{2}-3\right)}
Differentiate w.r.t. a
\frac{a^{4}-2a^{3}+6a^{2}-18a+9}{\left(\left(a-3\right)\left(a^{2}-3\right)\right)^{2}}
Share
Copied to clipboard
\frac{a-3}{\left(a-3\right)\left(a^{2}-3\right)}-\frac{a^{2}-3}{\left(a-3\right)\left(a^{2}-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a^{2}-3 and a-3 is \left(a-3\right)\left(a^{2}-3\right). Multiply \frac{1}{a^{2}-3} times \frac{a-3}{a-3}. Multiply \frac{1}{a-3} times \frac{a^{2}-3}{a^{2}-3}.
\frac{a-3-\left(a^{2}-3\right)}{\left(a-3\right)\left(a^{2}-3\right)}
Since \frac{a-3}{\left(a-3\right)\left(a^{2}-3\right)} and \frac{a^{2}-3}{\left(a-3\right)\left(a^{2}-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a-3-a^{2}+3}{\left(a-3\right)\left(a^{2}-3\right)}
Do the multiplications in a-3-\left(a^{2}-3\right).
\frac{a-a^{2}}{\left(a-3\right)\left(a^{2}-3\right)}
Combine like terms in a-3-a^{2}+3.
\frac{a-a^{2}}{a^{3}-3a^{2}-3a+9}
Expand \left(a-3\right)\left(a^{2}-3\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}