Solve for R
R=\frac{107500000}{293T}
T\neq 0
Solve for T
T=\frac{107500000}{293R}
R\neq 0
Share
Copied to clipboard
1=\frac{1}{430000}RT+\frac{1}{2500000}RT
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by RT.
1=\frac{293}{107500000}RT
Combine \frac{1}{430000}RT and \frac{1}{2500000}RT to get \frac{293}{107500000}RT.
\frac{293}{107500000}RT=1
Swap sides so that all variable terms are on the left hand side.
\frac{293T}{107500000}R=1
The equation is in standard form.
\frac{107500000\times \frac{293T}{107500000}R}{293T}=\frac{107500000}{293T}
Divide both sides by \frac{293}{107500000}T.
R=\frac{107500000}{293T}
Dividing by \frac{293}{107500000}T undoes the multiplication by \frac{293}{107500000}T.
R=\frac{107500000}{293T}\text{, }R\neq 0
Variable R cannot be equal to 0.
1=\frac{1}{430000}RT+\frac{1}{2500000}RT
Variable T cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by RT.
1=\frac{293}{107500000}RT
Combine \frac{1}{430000}RT and \frac{1}{2500000}RT to get \frac{293}{107500000}RT.
\frac{293}{107500000}RT=1
Swap sides so that all variable terms are on the left hand side.
\frac{293R}{107500000}T=1
The equation is in standard form.
\frac{107500000\times \frac{293R}{107500000}T}{293R}=\frac{107500000}{293R}
Divide both sides by \frac{293}{107500000}R.
T=\frac{107500000}{293R}
Dividing by \frac{293}{107500000}R undoes the multiplication by \frac{293}{107500000}R.
T=\frac{107500000}{293R}\text{, }T\neq 0
Variable T cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}