Evaluate
\frac{2}{45}\approx 0.044444444
Factor
\frac{2}{3 ^ {2} \cdot 5} = 0.044444444444444446
Share
Copied to clipboard
\frac{5}{45}+\frac{3}{45}-\frac{1}{6}+\frac{1}{30}
Least common multiple of 9 and 15 is 45. Convert \frac{1}{9} and \frac{1}{15} to fractions with denominator 45.
\frac{5+3}{45}-\frac{1}{6}+\frac{1}{30}
Since \frac{5}{45} and \frac{3}{45} have the same denominator, add them by adding their numerators.
\frac{8}{45}-\frac{1}{6}+\frac{1}{30}
Add 5 and 3 to get 8.
\frac{16}{90}-\frac{15}{90}+\frac{1}{30}
Least common multiple of 45 and 6 is 90. Convert \frac{8}{45} and \frac{1}{6} to fractions with denominator 90.
\frac{16-15}{90}+\frac{1}{30}
Since \frac{16}{90} and \frac{15}{90} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{90}+\frac{1}{30}
Subtract 15 from 16 to get 1.
\frac{1}{90}+\frac{3}{90}
Least common multiple of 90 and 30 is 90. Convert \frac{1}{90} and \frac{1}{30} to fractions with denominator 90.
\frac{1+3}{90}
Since \frac{1}{90} and \frac{3}{90} have the same denominator, add them by adding their numerators.
\frac{4}{90}
Add 1 and 3 to get 4.
\frac{2}{45}
Reduce the fraction \frac{4}{90} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}