Evaluate
-\frac{x^{3}}{27}+\frac{1}{8}
Factor
\frac{\left(2x-3\right)\left(-4x^{2}-6x-9\right)}{216}
Graph
Share
Copied to clipboard
\frac{27}{216}-\frac{8x^{3}}{216}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8 and 27 is 216. Multiply \frac{1}{8} times \frac{27}{27}. Multiply \frac{x^{3}}{27} times \frac{8}{8}.
\frac{27-8x^{3}}{216}
Since \frac{27}{216} and \frac{8x^{3}}{216} have the same denominator, subtract them by subtracting their numerators.
\frac{27-8x^{3}}{216}
Factor out \frac{1}{216}.
\left(2x-3\right)\left(-4x^{2}-6x-9\right)
Consider 27-8x^{3}. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 27 and q divides the leading coefficient -8. One such root is \frac{3}{2}. Factor the polynomial by dividing it by 2x-3.
\frac{\left(2x-3\right)\left(-4x^{2}-6x-9\right)}{216}
Rewrite the complete factored expression. Polynomial -4x^{2}-6x-9 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}