Evaluate
\frac{61}{98}\approx 0.62244898
Factor
\frac{61}{2 \cdot 7 ^ {2}} = 0.6224489795918368
Share
Copied to clipboard
\frac{1\times 13}{7\times 14}+\frac{4\sqrt{3}}{7}\times \frac{4\sqrt{3}}{14}
Multiply \frac{1}{7} times \frac{13}{14} by multiplying numerator times numerator and denominator times denominator.
\frac{13}{98}+\frac{4\sqrt{3}}{7}\times \frac{4\sqrt{3}}{14}
Do the multiplications in the fraction \frac{1\times 13}{7\times 14}.
\frac{13}{98}+\frac{4\sqrt{3}}{7}\times \frac{2}{7}\sqrt{3}
Divide 4\sqrt{3} by 14 to get \frac{2}{7}\sqrt{3}.
\frac{13}{98}+\frac{4\sqrt{3}\times 2}{7\times 7}\sqrt{3}
Multiply \frac{4\sqrt{3}}{7} times \frac{2}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{13}{98}+\frac{4\sqrt{3}\times 2\sqrt{3}}{7\times 7}
Express \frac{4\sqrt{3}\times 2}{7\times 7}\sqrt{3} as a single fraction.
\frac{13}{98}+\frac{2\times 4\sqrt{3}\times 2\sqrt{3}}{98}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 98 and 7\times 7 is 98. Multiply \frac{4\sqrt{3}\times 2\sqrt{3}}{7\times 7} times \frac{2}{2}.
\frac{13+2\times 4\sqrt{3}\times 2\sqrt{3}}{98}
Since \frac{13}{98} and \frac{2\times 4\sqrt{3}\times 2\sqrt{3}}{98} have the same denominator, add them by adding their numerators.
\frac{13+48}{98}
Do the multiplications in 13+2\times 4\sqrt{3}\times 2\sqrt{3}.
\frac{61}{98}
Do the calculations in 13+48.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}