Evaluate
\frac{\sqrt{7}\left(\sqrt{35}-5\right)}{70}\approx 0.034624561
Factor
\frac{\sqrt{7} {(\sqrt{5} \sqrt{7} - 5)}}{70} = 0.03462456124536539
Share
Copied to clipboard
\frac{7\sqrt{5}-5\sqrt{7}}{\left(7\sqrt{5}+5\sqrt{7}\right)\left(7\sqrt{5}-5\sqrt{7}\right)}
Rationalize the denominator of \frac{1}{7\sqrt{5}+5\sqrt{7}} by multiplying numerator and denominator by 7\sqrt{5}-5\sqrt{7}.
\frac{7\sqrt{5}-5\sqrt{7}}{\left(7\sqrt{5}\right)^{2}-\left(5\sqrt{7}\right)^{2}}
Consider \left(7\sqrt{5}+5\sqrt{7}\right)\left(7\sqrt{5}-5\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\sqrt{5}-5\sqrt{7}}{7^{2}\left(\sqrt{5}\right)^{2}-\left(5\sqrt{7}\right)^{2}}
Expand \left(7\sqrt{5}\right)^{2}.
\frac{7\sqrt{5}-5\sqrt{7}}{49\left(\sqrt{5}\right)^{2}-\left(5\sqrt{7}\right)^{2}}
Calculate 7 to the power of 2 and get 49.
\frac{7\sqrt{5}-5\sqrt{7}}{49\times 5-\left(5\sqrt{7}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{7\sqrt{5}-5\sqrt{7}}{245-\left(5\sqrt{7}\right)^{2}}
Multiply 49 and 5 to get 245.
\frac{7\sqrt{5}-5\sqrt{7}}{245-5^{2}\left(\sqrt{7}\right)^{2}}
Expand \left(5\sqrt{7}\right)^{2}.
\frac{7\sqrt{5}-5\sqrt{7}}{245-25\left(\sqrt{7}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{7\sqrt{5}-5\sqrt{7}}{245-25\times 7}
The square of \sqrt{7} is 7.
\frac{7\sqrt{5}-5\sqrt{7}}{245-175}
Multiply 25 and 7 to get 175.
\frac{7\sqrt{5}-5\sqrt{7}}{70}
Subtract 175 from 245 to get 70.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}