Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{7\sqrt{5}-5\sqrt{7}}{\left(7\sqrt{5}+5\sqrt{7}\right)\left(7\sqrt{5}-5\sqrt{7}\right)}
Rationalize the denominator of \frac{1}{7\sqrt{5}+5\sqrt{7}} by multiplying numerator and denominator by 7\sqrt{5}-5\sqrt{7}.
\frac{7\sqrt{5}-5\sqrt{7}}{\left(7\sqrt{5}\right)^{2}-\left(5\sqrt{7}\right)^{2}}
Consider \left(7\sqrt{5}+5\sqrt{7}\right)\left(7\sqrt{5}-5\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\sqrt{5}-5\sqrt{7}}{7^{2}\left(\sqrt{5}\right)^{2}-\left(5\sqrt{7}\right)^{2}}
Expand \left(7\sqrt{5}\right)^{2}.
\frac{7\sqrt{5}-5\sqrt{7}}{49\left(\sqrt{5}\right)^{2}-\left(5\sqrt{7}\right)^{2}}
Calculate 7 to the power of 2 and get 49.
\frac{7\sqrt{5}-5\sqrt{7}}{49\times 5-\left(5\sqrt{7}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{7\sqrt{5}-5\sqrt{7}}{245-\left(5\sqrt{7}\right)^{2}}
Multiply 49 and 5 to get 245.
\frac{7\sqrt{5}-5\sqrt{7}}{245-5^{2}\left(\sqrt{7}\right)^{2}}
Expand \left(5\sqrt{7}\right)^{2}.
\frac{7\sqrt{5}-5\sqrt{7}}{245-25\left(\sqrt{7}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{7\sqrt{5}-5\sqrt{7}}{245-25\times 7}
The square of \sqrt{7} is 7.
\frac{7\sqrt{5}-5\sqrt{7}}{245-175}
Multiply 25 and 7 to get 175.
\frac{7\sqrt{5}-5\sqrt{7}}{70}
Subtract 175 from 245 to get 70.