Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{7\sqrt{3}-5\sqrt{2}}{\left(7\sqrt{3}+5\sqrt{2}\right)\left(7\sqrt{3}-5\sqrt{2}\right)}
Rationalize the denominator of \frac{1}{7\sqrt{3}+5\sqrt{2}} by multiplying numerator and denominator by 7\sqrt{3}-5\sqrt{2}.
\frac{7\sqrt{3}-5\sqrt{2}}{\left(7\sqrt{3}\right)^{2}-\left(5\sqrt{2}\right)^{2}}
Consider \left(7\sqrt{3}+5\sqrt{2}\right)\left(7\sqrt{3}-5\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\sqrt{3}-5\sqrt{2}}{7^{2}\left(\sqrt{3}\right)^{2}-\left(5\sqrt{2}\right)^{2}}
Expand \left(7\sqrt{3}\right)^{2}.
\frac{7\sqrt{3}-5\sqrt{2}}{49\left(\sqrt{3}\right)^{2}-\left(5\sqrt{2}\right)^{2}}
Calculate 7 to the power of 2 and get 49.
\frac{7\sqrt{3}-5\sqrt{2}}{49\times 3-\left(5\sqrt{2}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{7\sqrt{3}-5\sqrt{2}}{147-\left(5\sqrt{2}\right)^{2}}
Multiply 49 and 3 to get 147.
\frac{7\sqrt{3}-5\sqrt{2}}{147-5^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(5\sqrt{2}\right)^{2}.
\frac{7\sqrt{3}-5\sqrt{2}}{147-25\left(\sqrt{2}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{7\sqrt{3}-5\sqrt{2}}{147-25\times 2}
The square of \sqrt{2} is 2.
\frac{7\sqrt{3}-5\sqrt{2}}{147-50}
Multiply 25 and 2 to get 50.
\frac{7\sqrt{3}-5\sqrt{2}}{97}
Subtract 50 from 147 to get 97.