Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{11+\sqrt{3}}
Add 7 and 4 to get 11.
\frac{11-\sqrt{3}}{\left(11+\sqrt{3}\right)\left(11-\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{11+\sqrt{3}} by multiplying numerator and denominator by 11-\sqrt{3}.
\frac{11-\sqrt{3}}{11^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(11+\sqrt{3}\right)\left(11-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{11-\sqrt{3}}{121-3}
Square 11. Square \sqrt{3}.
\frac{11-\sqrt{3}}{118}
Subtract 3 from 121 to get 118.