Solve for F_1
F_{1}=-\frac{7980ℏ}{60-133ℏ}
ℏ\neq 0\text{ and }ℏ\neq \frac{60}{133}
Solve for ℏ
ℏ=-\frac{60F_{1}}{133\left(60-F_{1}\right)}
F_{1}\neq 0\text{ and }F_{1}\neq 60
Share
Copied to clipboard
133F_{1}ℏ=60F_{1}+7980ℏ
Variable F_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 7980F_{1}ℏ, the least common multiple of 60,133ℏ,F_{1}.
133F_{1}ℏ-60F_{1}=7980ℏ
Subtract 60F_{1} from both sides.
\left(133ℏ-60\right)F_{1}=7980ℏ
Combine all terms containing F_{1}.
\frac{\left(133ℏ-60\right)F_{1}}{133ℏ-60}=\frac{7980ℏ}{133ℏ-60}
Divide both sides by 133ℏ-60.
F_{1}=\frac{7980ℏ}{133ℏ-60}
Dividing by 133ℏ-60 undoes the multiplication by 133ℏ-60.
F_{1}=\frac{7980ℏ}{133ℏ-60}\text{, }F_{1}\neq 0
Variable F_{1} cannot be equal to 0.
133F_{1}ℏ=60F_{1}+7980ℏ
Variable ℏ cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 7980F_{1}ℏ, the least common multiple of 60,133ℏ,F_{1}.
133F_{1}ℏ-7980ℏ=60F_{1}
Subtract 7980ℏ from both sides.
\left(133F_{1}-7980\right)ℏ=60F_{1}
Combine all terms containing ℏ.
\frac{\left(133F_{1}-7980\right)ℏ}{133F_{1}-7980}=\frac{60F_{1}}{133F_{1}-7980}
Divide both sides by 133F_{1}-7980.
ℏ=\frac{60F_{1}}{133F_{1}-7980}
Dividing by 133F_{1}-7980 undoes the multiplication by 133F_{1}-7980.
ℏ=\frac{60F_{1}}{133\left(F_{1}-60\right)}
Divide 60F_{1} by 133F_{1}-7980.
ℏ=\frac{60F_{1}}{133\left(F_{1}-60\right)}\text{, }ℏ\neq 0
Variable ℏ cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}