Evaluate
\frac{17}{12}\approx 1.416666667
Factor
\frac{17}{2 ^ {2} \cdot 3} = 1\frac{5}{12} = 1.4166666666666667
Share
Copied to clipboard
\frac{1}{6}-\frac{5\times 9}{12\times 10}+\frac{13}{8}
Multiply \frac{5}{12} times \frac{9}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{6}-\frac{45}{120}+\frac{13}{8}
Do the multiplications in the fraction \frac{5\times 9}{12\times 10}.
\frac{1}{6}-\frac{3}{8}+\frac{13}{8}
Reduce the fraction \frac{45}{120} to lowest terms by extracting and canceling out 15.
\frac{4}{24}-\frac{9}{24}+\frac{13}{8}
Least common multiple of 6 and 8 is 24. Convert \frac{1}{6} and \frac{3}{8} to fractions with denominator 24.
\frac{4-9}{24}+\frac{13}{8}
Since \frac{4}{24} and \frac{9}{24} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{24}+\frac{13}{8}
Subtract 9 from 4 to get -5.
-\frac{5}{24}+\frac{39}{24}
Least common multiple of 24 and 8 is 24. Convert -\frac{5}{24} and \frac{13}{8} to fractions with denominator 24.
\frac{-5+39}{24}
Since -\frac{5}{24} and \frac{39}{24} have the same denominator, add them by adding their numerators.
\frac{34}{24}
Add -5 and 39 to get 34.
\frac{17}{12}
Reduce the fraction \frac{34}{24} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}