Solve for x
x = -\frac{69}{14} = -4\frac{13}{14} \approx -4.928571429
Graph
Share
Copied to clipboard
x-4-5=\left(5x+20\right)\times 3
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by 5\left(x-4\right)\left(x+4\right), the least common multiple of 5x+20,x^{2}-16,x-4.
x-9=\left(5x+20\right)\times 3
Subtract 5 from -4 to get -9.
x-9=15x+60
Use the distributive property to multiply 5x+20 by 3.
x-9-15x=60
Subtract 15x from both sides.
-14x-9=60
Combine x and -15x to get -14x.
-14x=60+9
Add 9 to both sides.
-14x=69
Add 60 and 9 to get 69.
x=\frac{69}{-14}
Divide both sides by -14.
x=-\frac{69}{14}
Fraction \frac{69}{-14} can be rewritten as -\frac{69}{14} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}