Evaluate
\frac{133}{90}\approx 1.477777778
Factor
\frac{7 \cdot 19}{2 \cdot 3 ^ {2} \cdot 5} = 1\frac{43}{90} = 1.4777777777777779
Share
Copied to clipboard
\frac{1}{5}+\frac{7}{9}-\left(-\frac{1}{2}\right)
The opposite of -\frac{7}{9} is \frac{7}{9}.
\frac{9}{45}+\frac{35}{45}-\left(-\frac{1}{2}\right)
Least common multiple of 5 and 9 is 45. Convert \frac{1}{5} and \frac{7}{9} to fractions with denominator 45.
\frac{9+35}{45}-\left(-\frac{1}{2}\right)
Since \frac{9}{45} and \frac{35}{45} have the same denominator, add them by adding their numerators.
\frac{44}{45}-\left(-\frac{1}{2}\right)
Add 9 and 35 to get 44.
\frac{44}{45}+\frac{1}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{88}{90}+\frac{45}{90}
Least common multiple of 45 and 2 is 90. Convert \frac{44}{45} and \frac{1}{2} to fractions with denominator 90.
\frac{88+45}{90}
Since \frac{88}{90} and \frac{45}{90} have the same denominator, add them by adding their numerators.
\frac{133}{90}
Add 88 and 45 to get 133.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}