Evaluate
-\frac{4x}{5}+\frac{23}{30}
Expand
-\frac{4x}{5}+\frac{23}{30}
Graph
Share
Copied to clipboard
\frac{1}{5}x+\frac{1}{5}\times 3-\frac{1}{2}\left(2x-1\right)-\frac{1}{3}
Use the distributive property to multiply \frac{1}{5} by x+3.
\frac{1}{5}x+\frac{3}{5}-\frac{1}{2}\left(2x-1\right)-\frac{1}{3}
Multiply \frac{1}{5} and 3 to get \frac{3}{5}.
\frac{1}{5}x+\frac{3}{5}-\frac{1}{2}\times 2x-\frac{1}{2}\left(-1\right)-\frac{1}{3}
Use the distributive property to multiply -\frac{1}{2} by 2x-1.
\frac{1}{5}x+\frac{3}{5}-x-\frac{1}{2}\left(-1\right)-\frac{1}{3}
Cancel out 2 and 2.
\frac{1}{5}x+\frac{3}{5}-x+\frac{1}{2}-\frac{1}{3}
Multiply -\frac{1}{2} and -1 to get \frac{1}{2}.
-\frac{4}{5}x+\frac{3}{5}+\frac{1}{2}-\frac{1}{3}
Combine \frac{1}{5}x and -x to get -\frac{4}{5}x.
-\frac{4}{5}x+\frac{6}{10}+\frac{5}{10}-\frac{1}{3}
Least common multiple of 5 and 2 is 10. Convert \frac{3}{5} and \frac{1}{2} to fractions with denominator 10.
-\frac{4}{5}x+\frac{6+5}{10}-\frac{1}{3}
Since \frac{6}{10} and \frac{5}{10} have the same denominator, add them by adding their numerators.
-\frac{4}{5}x+\frac{11}{10}-\frac{1}{3}
Add 6 and 5 to get 11.
-\frac{4}{5}x+\frac{33}{30}-\frac{10}{30}
Least common multiple of 10 and 3 is 30. Convert \frac{11}{10} and \frac{1}{3} to fractions with denominator 30.
-\frac{4}{5}x+\frac{33-10}{30}
Since \frac{33}{30} and \frac{10}{30} have the same denominator, subtract them by subtracting their numerators.
-\frac{4}{5}x+\frac{23}{30}
Subtract 10 from 33 to get 23.
\frac{1}{5}x+\frac{1}{5}\times 3-\frac{1}{2}\left(2x-1\right)-\frac{1}{3}
Use the distributive property to multiply \frac{1}{5} by x+3.
\frac{1}{5}x+\frac{3}{5}-\frac{1}{2}\left(2x-1\right)-\frac{1}{3}
Multiply \frac{1}{5} and 3 to get \frac{3}{5}.
\frac{1}{5}x+\frac{3}{5}-\frac{1}{2}\times 2x-\frac{1}{2}\left(-1\right)-\frac{1}{3}
Use the distributive property to multiply -\frac{1}{2} by 2x-1.
\frac{1}{5}x+\frac{3}{5}-x-\frac{1}{2}\left(-1\right)-\frac{1}{3}
Cancel out 2 and 2.
\frac{1}{5}x+\frac{3}{5}-x+\frac{1}{2}-\frac{1}{3}
Multiply -\frac{1}{2} and -1 to get \frac{1}{2}.
-\frac{4}{5}x+\frac{3}{5}+\frac{1}{2}-\frac{1}{3}
Combine \frac{1}{5}x and -x to get -\frac{4}{5}x.
-\frac{4}{5}x+\frac{6}{10}+\frac{5}{10}-\frac{1}{3}
Least common multiple of 5 and 2 is 10. Convert \frac{3}{5} and \frac{1}{2} to fractions with denominator 10.
-\frac{4}{5}x+\frac{6+5}{10}-\frac{1}{3}
Since \frac{6}{10} and \frac{5}{10} have the same denominator, add them by adding their numerators.
-\frac{4}{5}x+\frac{11}{10}-\frac{1}{3}
Add 6 and 5 to get 11.
-\frac{4}{5}x+\frac{33}{30}-\frac{10}{30}
Least common multiple of 10 and 3 is 30. Convert \frac{11}{10} and \frac{1}{3} to fractions with denominator 30.
-\frac{4}{5}x+\frac{33-10}{30}
Since \frac{33}{30} and \frac{10}{30} have the same denominator, subtract them by subtracting their numerators.
-\frac{4}{5}x+\frac{23}{30}
Subtract 10 from 33 to get 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}