Evaluate
\frac{197}{120}\approx 1.641666667
Factor
\frac{197}{2 ^ {3} \cdot 3 \cdot 5} = 1\frac{77}{120} = 1.6416666666666666
Share
Copied to clipboard
\frac{1}{5}\times \frac{1}{2}+\frac{\frac{3}{4}}{\frac{4}{10}}-\frac{1}{3}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{1\times 1}{5\times 2}+\frac{\frac{3}{4}}{\frac{4}{10}}-\frac{1}{3}
Multiply \frac{1}{5} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{10}+\frac{\frac{3}{4}}{\frac{4}{10}}-\frac{1}{3}
Do the multiplications in the fraction \frac{1\times 1}{5\times 2}.
\frac{1}{10}+\frac{3\times 10}{4\times 4}-\frac{1}{3}
Divide \frac{3}{4} by \frac{4}{10} by multiplying \frac{3}{4} by the reciprocal of \frac{4}{10}.
\frac{1}{10}+\frac{3\times 5}{2\times 4}-\frac{1}{3}
Cancel out 2 in both numerator and denominator.
\frac{1}{10}+\frac{15}{2\times 4}-\frac{1}{3}
Multiply 3 and 5 to get 15.
\frac{1}{10}+\frac{15}{8}-\frac{1}{3}
Multiply 2 and 4 to get 8.
\frac{4}{40}+\frac{75}{40}-\frac{1}{3}
Least common multiple of 10 and 8 is 40. Convert \frac{1}{10} and \frac{15}{8} to fractions with denominator 40.
\frac{4+75}{40}-\frac{1}{3}
Since \frac{4}{40} and \frac{75}{40} have the same denominator, add them by adding their numerators.
\frac{79}{40}-\frac{1}{3}
Add 4 and 75 to get 79.
\frac{237}{120}-\frac{40}{120}
Least common multiple of 40 and 3 is 120. Convert \frac{79}{40} and \frac{1}{3} to fractions with denominator 120.
\frac{237-40}{120}
Since \frac{237}{120} and \frac{40}{120} have the same denominator, subtract them by subtracting their numerators.
\frac{197}{120}
Subtract 40 from 237 to get 197.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}