Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{5-\sqrt{5}}{\left(5+\sqrt{5}\right)\left(5-\sqrt{5}\right)}+\frac{1}{5-\sqrt{5}}
Rationalize the denominator of \frac{1}{5+\sqrt{5}} by multiplying numerator and denominator by 5-\sqrt{5}.
\frac{5-\sqrt{5}}{5^{2}-\left(\sqrt{5}\right)^{2}}+\frac{1}{5-\sqrt{5}}
Consider \left(5+\sqrt{5}\right)\left(5-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5-\sqrt{5}}{25-5}+\frac{1}{5-\sqrt{5}}
Square 5. Square \sqrt{5}.
\frac{5-\sqrt{5}}{20}+\frac{1}{5-\sqrt{5}}
Subtract 5 from 25 to get 20.
\frac{5-\sqrt{5}}{20}+\frac{5+\sqrt{5}}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}
Rationalize the denominator of \frac{1}{5-\sqrt{5}} by multiplying numerator and denominator by 5+\sqrt{5}.
\frac{5-\sqrt{5}}{20}+\frac{5+\sqrt{5}}{5^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5-\sqrt{5}}{20}+\frac{5+\sqrt{5}}{25-5}
Square 5. Square \sqrt{5}.
\frac{5-\sqrt{5}}{20}+\frac{5+\sqrt{5}}{20}
Subtract 5 from 25 to get 20.
\frac{5-\sqrt{5}+5+\sqrt{5}}{20}
Since \frac{5-\sqrt{5}}{20} and \frac{5+\sqrt{5}}{20} have the same denominator, add them by adding their numerators.
\frac{10}{20}
Do the calculations in 5-\sqrt{5}+5+\sqrt{5}.
\frac{1}{2}
Reduce the fraction \frac{10}{20} to lowest terms by extracting and canceling out 10.