Evaluate
\frac{12a^{3}-44a^{2}+a+5}{8\left(a^{2}-1\right)\left(12a^{2}+1\right)}
Factor
\frac{12a^{3}-44a^{2}+a+5}{8\left(a^{2}-1\right)\left(12a^{2}+1\right)}
Share
Copied to clipboard
\frac{1}{4\left(a+1\right)}-\frac{1}{8\left(a-1\right)}-\frac{1}{12a^{2}+1}
Factor 4a+4. Factor 8a-8.
\frac{2\left(a-1\right)}{8\left(a-1\right)\left(a+1\right)}-\frac{a+1}{8\left(a-1\right)\left(a+1\right)}-\frac{1}{12a^{2}+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(a+1\right) and 8\left(a-1\right) is 8\left(a-1\right)\left(a+1\right). Multiply \frac{1}{4\left(a+1\right)} times \frac{2\left(a-1\right)}{2\left(a-1\right)}. Multiply \frac{1}{8\left(a-1\right)} times \frac{a+1}{a+1}.
\frac{2\left(a-1\right)-\left(a+1\right)}{8\left(a-1\right)\left(a+1\right)}-\frac{1}{12a^{2}+1}
Since \frac{2\left(a-1\right)}{8\left(a-1\right)\left(a+1\right)} and \frac{a+1}{8\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2a-2-a-1}{8\left(a-1\right)\left(a+1\right)}-\frac{1}{12a^{2}+1}
Do the multiplications in 2\left(a-1\right)-\left(a+1\right).
\frac{a-3}{8\left(a-1\right)\left(a+1\right)}-\frac{1}{12a^{2}+1}
Combine like terms in 2a-2-a-1.
\frac{\left(a-3\right)\left(12a^{2}+1\right)}{8\left(a-1\right)\left(a+1\right)\left(12a^{2}+1\right)}-\frac{8\left(a-1\right)\left(a+1\right)}{8\left(a-1\right)\left(a+1\right)\left(12a^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8\left(a-1\right)\left(a+1\right) and 12a^{2}+1 is 8\left(a-1\right)\left(a+1\right)\left(12a^{2}+1\right). Multiply \frac{a-3}{8\left(a-1\right)\left(a+1\right)} times \frac{12a^{2}+1}{12a^{2}+1}. Multiply \frac{1}{12a^{2}+1} times \frac{8\left(a-1\right)\left(a+1\right)}{8\left(a-1\right)\left(a+1\right)}.
\frac{\left(a-3\right)\left(12a^{2}+1\right)-8\left(a-1\right)\left(a+1\right)}{8\left(a-1\right)\left(a+1\right)\left(12a^{2}+1\right)}
Since \frac{\left(a-3\right)\left(12a^{2}+1\right)}{8\left(a-1\right)\left(a+1\right)\left(12a^{2}+1\right)} and \frac{8\left(a-1\right)\left(a+1\right)}{8\left(a-1\right)\left(a+1\right)\left(12a^{2}+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{12a^{3}+a-36a^{2}-3-8a^{2}-8a+8a+8}{8\left(a-1\right)\left(a+1\right)\left(12a^{2}+1\right)}
Do the multiplications in \left(a-3\right)\left(12a^{2}+1\right)-8\left(a-1\right)\left(a+1\right).
\frac{12a^{3}+a-44a^{2}+5}{8\left(a-1\right)\left(a+1\right)\left(12a^{2}+1\right)}
Combine like terms in 12a^{3}+a-36a^{2}-3-8a^{2}-8a+8a+8.
\frac{12a^{3}+a-44a^{2}+5}{96a^{4}-88a^{2}-8}
Expand 8\left(a-1\right)\left(a+1\right)\left(12a^{2}+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}