Solve for x
x=36
Graph
Share
Copied to clipboard
2\sqrt{x}=x-\left(\frac{1}{4}x+15\right)
Subtract \frac{1}{4}x+15 from both sides of the equation.
2\sqrt{x}=x-\frac{1}{4}x-15
To find the opposite of \frac{1}{4}x+15, find the opposite of each term.
2\sqrt{x}=\frac{3}{4}x-15
Combine x and -\frac{1}{4}x to get \frac{3}{4}x.
\left(2\sqrt{x}\right)^{2}=\left(\frac{3}{4}x-15\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{x}\right)^{2}=\left(\frac{3}{4}x-15\right)^{2}
Expand \left(2\sqrt{x}\right)^{2}.
4\left(\sqrt{x}\right)^{2}=\left(\frac{3}{4}x-15\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x=\left(\frac{3}{4}x-15\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
4x=\frac{9}{16}x^{2}-\frac{45}{2}x+225
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{3}{4}x-15\right)^{2}.
4x-\frac{9}{16}x^{2}=-\frac{45}{2}x+225
Subtract \frac{9}{16}x^{2} from both sides.
4x-\frac{9}{16}x^{2}+\frac{45}{2}x=225
Add \frac{45}{2}x to both sides.
\frac{53}{2}x-\frac{9}{16}x^{2}=225
Combine 4x and \frac{45}{2}x to get \frac{53}{2}x.
\frac{53}{2}x-\frac{9}{16}x^{2}-225=0
Subtract 225 from both sides.
-\frac{9}{16}x^{2}+\frac{53}{2}x-225=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{53}{2}±\sqrt{\left(\frac{53}{2}\right)^{2}-4\left(-\frac{9}{16}\right)\left(-225\right)}}{2\left(-\frac{9}{16}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{9}{16} for a, \frac{53}{2} for b, and -225 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{53}{2}±\sqrt{\frac{2809}{4}-4\left(-\frac{9}{16}\right)\left(-225\right)}}{2\left(-\frac{9}{16}\right)}
Square \frac{53}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{53}{2}±\sqrt{\frac{2809}{4}+\frac{9}{4}\left(-225\right)}}{2\left(-\frac{9}{16}\right)}
Multiply -4 times -\frac{9}{16}.
x=\frac{-\frac{53}{2}±\sqrt{\frac{2809-2025}{4}}}{2\left(-\frac{9}{16}\right)}
Multiply \frac{9}{4} times -225.
x=\frac{-\frac{53}{2}±\sqrt{196}}{2\left(-\frac{9}{16}\right)}
Add \frac{2809}{4} to -\frac{2025}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{53}{2}±14}{2\left(-\frac{9}{16}\right)}
Take the square root of 196.
x=\frac{-\frac{53}{2}±14}{-\frac{9}{8}}
Multiply 2 times -\frac{9}{16}.
x=-\frac{\frac{25}{2}}{-\frac{9}{8}}
Now solve the equation x=\frac{-\frac{53}{2}±14}{-\frac{9}{8}} when ± is plus. Add -\frac{53}{2} to 14.
x=\frac{100}{9}
Divide -\frac{25}{2} by -\frac{9}{8} by multiplying -\frac{25}{2} by the reciprocal of -\frac{9}{8}.
x=-\frac{\frac{81}{2}}{-\frac{9}{8}}
Now solve the equation x=\frac{-\frac{53}{2}±14}{-\frac{9}{8}} when ± is minus. Subtract 14 from -\frac{53}{2}.
x=36
Divide -\frac{81}{2} by -\frac{9}{8} by multiplying -\frac{81}{2} by the reciprocal of -\frac{9}{8}.
x=\frac{100}{9} x=36
The equation is now solved.
\frac{1}{4}\times \frac{100}{9}+2\sqrt{\frac{100}{9}}+15=\frac{100}{9}
Substitute \frac{100}{9} for x in the equation \frac{1}{4}x+2\sqrt{x}+15=x.
\frac{220}{9}=\frac{100}{9}
Simplify. The value x=\frac{100}{9} does not satisfy the equation.
\frac{1}{4}\times 36+2\sqrt{36}+15=36
Substitute 36 for x in the equation \frac{1}{4}x+2\sqrt{x}+15=x.
36=36
Simplify. The value x=36 satisfies the equation.
x=36
Equation 2\sqrt{x}=\frac{3x}{4}-15 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}