Solve for s
s\leq 26
Share
Copied to clipboard
\frac{1}{4}s-3\leq \frac{1}{8}\times 28
Add 3 and 25 to get 28.
\frac{1}{4}s-3\leq \frac{28}{8}
Multiply \frac{1}{8} and 28 to get \frac{28}{8}.
\frac{1}{4}s-3\leq \frac{7}{2}
Reduce the fraction \frac{28}{8} to lowest terms by extracting and canceling out 4.
\frac{1}{4}s\leq \frac{7}{2}+3
Add 3 to both sides.
\frac{1}{4}s\leq \frac{7}{2}+\frac{6}{2}
Convert 3 to fraction \frac{6}{2}.
\frac{1}{4}s\leq \frac{7+6}{2}
Since \frac{7}{2} and \frac{6}{2} have the same denominator, add them by adding their numerators.
\frac{1}{4}s\leq \frac{13}{2}
Add 7 and 6 to get 13.
s\leq \frac{13}{2}\times 4
Multiply both sides by 4, the reciprocal of \frac{1}{4}. Since \frac{1}{4} is positive, the inequality direction remains the same.
s\leq \frac{13\times 4}{2}
Express \frac{13}{2}\times 4 as a single fraction.
s\leq \frac{52}{2}
Multiply 13 and 4 to get 52.
s\leq 26
Divide 52 by 2 to get 26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}