Solve for m
m=4
m=0
Share
Copied to clipboard
\frac{1}{4}m^{2}-m-2+2=0
Combine -\frac{1}{2}m and -\frac{1}{2}m to get -m.
\frac{1}{4}m^{2}-m=0
Add -2 and 2 to get 0.
m\left(\frac{1}{4}m-1\right)=0
Factor out m.
m=0 m=4
To find equation solutions, solve m=0 and \frac{m}{4}-1=0.
\frac{1}{4}m^{2}-m-2+2=0
Combine -\frac{1}{2}m and -\frac{1}{2}m to get -m.
\frac{1}{4}m^{2}-m=0
Add -2 and 2 to get 0.
m=\frac{-\left(-1\right)±\sqrt{1}}{2\times \frac{1}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{4} for a, -1 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-1\right)±1}{2\times \frac{1}{4}}
Take the square root of 1.
m=\frac{1±1}{2\times \frac{1}{4}}
The opposite of -1 is 1.
m=\frac{1±1}{\frac{1}{2}}
Multiply 2 times \frac{1}{4}.
m=\frac{2}{\frac{1}{2}}
Now solve the equation m=\frac{1±1}{\frac{1}{2}} when ± is plus. Add 1 to 1.
m=4
Divide 2 by \frac{1}{2} by multiplying 2 by the reciprocal of \frac{1}{2}.
m=\frac{0}{\frac{1}{2}}
Now solve the equation m=\frac{1±1}{\frac{1}{2}} when ± is minus. Subtract 1 from 1.
m=0
Divide 0 by \frac{1}{2} by multiplying 0 by the reciprocal of \frac{1}{2}.
m=4 m=0
The equation is now solved.
\frac{1}{4}m^{2}-m-2+2=0
Combine -\frac{1}{2}m and -\frac{1}{2}m to get -m.
\frac{1}{4}m^{2}-m=0
Add -2 and 2 to get 0.
\frac{\frac{1}{4}m^{2}-m}{\frac{1}{4}}=\frac{0}{\frac{1}{4}}
Multiply both sides by 4.
m^{2}+\left(-\frac{1}{\frac{1}{4}}\right)m=\frac{0}{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
m^{2}-4m=\frac{0}{\frac{1}{4}}
Divide -1 by \frac{1}{4} by multiplying -1 by the reciprocal of \frac{1}{4}.
m^{2}-4m=0
Divide 0 by \frac{1}{4} by multiplying 0 by the reciprocal of \frac{1}{4}.
m^{2}-4m+\left(-2\right)^{2}=\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-4m+4=4
Square -2.
\left(m-2\right)^{2}=4
Factor m^{2}-4m+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-2\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
m-2=2 m-2=-2
Simplify.
m=4 m=0
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}