Factor
\frac{a\left(5b^{2}-12a^{2}\right)\left(12a^{2}+5b^{2}\right)}{100}
Evaluate
\frac{ab^{4}}{4}-\frac{36a^{5}}{25}
Share
Copied to clipboard
\frac{25ab^{4}-144a^{5}}{100}
Factor out \frac{1}{100}.
a\left(25b^{4}-144a^{4}\right)
Consider 25ab^{4}-144a^{5}. Factor out a.
\left(5b^{2}-12a^{2}\right)\left(5b^{2}+12a^{2}\right)
Consider 25b^{4}-144a^{4}. Rewrite 25b^{4}-144a^{4} as \left(5b^{2}\right)^{2}-\left(12a^{2}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(-12a^{2}+5b^{2}\right)\left(12a^{2}+5b^{2}\right)
Reorder the terms.
\frac{a\left(-12a^{2}+5b^{2}\right)\left(12a^{2}+5b^{2}\right)}{100}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}