Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{25ab^{4}-144a^{5}}{100}
Factor out \frac{1}{100}.
a\left(25b^{4}-144a^{4}\right)
Consider 25ab^{4}-144a^{5}. Factor out a.
\left(5b^{2}-12a^{2}\right)\left(5b^{2}+12a^{2}\right)
Consider 25b^{4}-144a^{4}. Rewrite 25b^{4}-144a^{4} as \left(5b^{2}\right)^{2}-\left(12a^{2}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(-12a^{2}+5b^{2}\right)\left(12a^{2}+5b^{2}\right)
Reorder the terms.
\frac{a\left(-12a^{2}+5b^{2}\right)\left(12a^{2}+5b^{2}\right)}{100}
Rewrite the complete factored expression.