Solve for a
a = -\frac{10}{3} = -3\frac{1}{3} \approx -3.333333333
Share
Copied to clipboard
\frac{1}{4}a=-\frac{1}{10}-\frac{11}{15}
Subtract \frac{11}{15} from both sides.
\frac{1}{4}a=-\frac{3}{30}-\frac{22}{30}
Least common multiple of 10 and 15 is 30. Convert -\frac{1}{10} and \frac{11}{15} to fractions with denominator 30.
\frac{1}{4}a=\frac{-3-22}{30}
Since -\frac{3}{30} and \frac{22}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}a=\frac{-25}{30}
Subtract 22 from -3 to get -25.
\frac{1}{4}a=-\frac{5}{6}
Reduce the fraction \frac{-25}{30} to lowest terms by extracting and canceling out 5.
a=-\frac{5}{6}\times 4
Multiply both sides by 4, the reciprocal of \frac{1}{4}.
a=\frac{-5\times 4}{6}
Express -\frac{5}{6}\times 4 as a single fraction.
a=\frac{-20}{6}
Multiply -5 and 4 to get -20.
a=-\frac{10}{3}
Reduce the fraction \frac{-20}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}