Solve for x
x=-1
Graph
Share
Copied to clipboard
\frac{1}{4}x+\frac{1}{4}\left(-3\right)=\frac{1}{3}\left(x-2\right)
Use the distributive property to multiply \frac{1}{4} by x-3.
\frac{1}{4}x+\frac{-3}{4}=\frac{1}{3}\left(x-2\right)
Multiply \frac{1}{4} and -3 to get \frac{-3}{4}.
\frac{1}{4}x-\frac{3}{4}=\frac{1}{3}\left(x-2\right)
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
\frac{1}{4}x-\frac{3}{4}=\frac{1}{3}x+\frac{1}{3}\left(-2\right)
Use the distributive property to multiply \frac{1}{3} by x-2.
\frac{1}{4}x-\frac{3}{4}=\frac{1}{3}x+\frac{-2}{3}
Multiply \frac{1}{3} and -2 to get \frac{-2}{3}.
\frac{1}{4}x-\frac{3}{4}=\frac{1}{3}x-\frac{2}{3}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{1}{4}x-\frac{3}{4}-\frac{1}{3}x=-\frac{2}{3}
Subtract \frac{1}{3}x from both sides.
-\frac{1}{12}x-\frac{3}{4}=-\frac{2}{3}
Combine \frac{1}{4}x and -\frac{1}{3}x to get -\frac{1}{12}x.
-\frac{1}{12}x=-\frac{2}{3}+\frac{3}{4}
Add \frac{3}{4} to both sides.
-\frac{1}{12}x=-\frac{8}{12}+\frac{9}{12}
Least common multiple of 3 and 4 is 12. Convert -\frac{2}{3} and \frac{3}{4} to fractions with denominator 12.
-\frac{1}{12}x=\frac{-8+9}{12}
Since -\frac{8}{12} and \frac{9}{12} have the same denominator, add them by adding their numerators.
-\frac{1}{12}x=\frac{1}{12}
Add -8 and 9 to get 1.
x=\frac{1}{12}\left(-12\right)
Multiply both sides by -12, the reciprocal of -\frac{1}{12}.
x=\frac{-12}{12}
Multiply \frac{1}{12} and -12 to get \frac{-12}{12}.
x=-1
Divide -12 by 12 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}