Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{4}\left(x^{2}+2xy+y^{2}\right)-\frac{9}{16}\left(x-y\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+y\right)^{2}.
\frac{1}{4}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}-\frac{9}{16}\left(x-y\right)^{2}
Use the distributive property to multiply \frac{1}{4} by x^{2}+2xy+y^{2}.
\frac{1}{4}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}-\frac{9}{16}\left(x^{2}-2xy+y^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-y\right)^{2}.
\frac{1}{4}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}-\frac{9}{16}x^{2}+\frac{9}{8}xy-\frac{9}{16}y^{2}
Use the distributive property to multiply -\frac{9}{16} by x^{2}-2xy+y^{2}.
-\frac{5}{16}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}+\frac{9}{8}xy-\frac{9}{16}y^{2}
Combine \frac{1}{4}x^{2} and -\frac{9}{16}x^{2} to get -\frac{5}{16}x^{2}.
-\frac{5}{16}x^{2}+\frac{13}{8}xy+\frac{1}{4}y^{2}-\frac{9}{16}y^{2}
Combine \frac{1}{2}xy and \frac{9}{8}xy to get \frac{13}{8}xy.
-\frac{5}{16}x^{2}+\frac{13}{8}xy-\frac{5}{16}y^{2}
Combine \frac{1}{4}y^{2} and -\frac{9}{16}y^{2} to get -\frac{5}{16}y^{2}.
\frac{1}{4}\left(x^{2}+2xy+y^{2}\right)-\frac{9}{16}\left(x-y\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+y\right)^{2}.
\frac{1}{4}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}-\frac{9}{16}\left(x-y\right)^{2}
Use the distributive property to multiply \frac{1}{4} by x^{2}+2xy+y^{2}.
\frac{1}{4}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}-\frac{9}{16}\left(x^{2}-2xy+y^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-y\right)^{2}.
\frac{1}{4}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}-\frac{9}{16}x^{2}+\frac{9}{8}xy-\frac{9}{16}y^{2}
Use the distributive property to multiply -\frac{9}{16} by x^{2}-2xy+y^{2}.
-\frac{5}{16}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}+\frac{9}{8}xy-\frac{9}{16}y^{2}
Combine \frac{1}{4}x^{2} and -\frac{9}{16}x^{2} to get -\frac{5}{16}x^{2}.
-\frac{5}{16}x^{2}+\frac{13}{8}xy+\frac{1}{4}y^{2}-\frac{9}{16}y^{2}
Combine \frac{1}{2}xy and \frac{9}{8}xy to get \frac{13}{8}xy.
-\frac{5}{16}x^{2}+\frac{13}{8}xy-\frac{5}{16}y^{2}
Combine \frac{1}{4}y^{2} and -\frac{9}{16}y^{2} to get -\frac{5}{16}y^{2}.