Evaluate
\frac{\left(5x-y\right)\left(5y-x\right)}{16}
Expand
\frac{13xy}{8}-\frac{5x^{2}}{16}-\frac{5y^{2}}{16}
Share
Copied to clipboard
\frac{1}{4}\left(x^{2}+2xy+y^{2}\right)-\frac{9}{16}\left(x-y\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+y\right)^{2}.
\frac{1}{4}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}-\frac{9}{16}\left(x-y\right)^{2}
Use the distributive property to multiply \frac{1}{4} by x^{2}+2xy+y^{2}.
\frac{1}{4}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}-\frac{9}{16}\left(x^{2}-2xy+y^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-y\right)^{2}.
\frac{1}{4}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}-\frac{9}{16}x^{2}+\frac{9}{8}xy-\frac{9}{16}y^{2}
Use the distributive property to multiply -\frac{9}{16} by x^{2}-2xy+y^{2}.
-\frac{5}{16}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}+\frac{9}{8}xy-\frac{9}{16}y^{2}
Combine \frac{1}{4}x^{2} and -\frac{9}{16}x^{2} to get -\frac{5}{16}x^{2}.
-\frac{5}{16}x^{2}+\frac{13}{8}xy+\frac{1}{4}y^{2}-\frac{9}{16}y^{2}
Combine \frac{1}{2}xy and \frac{9}{8}xy to get \frac{13}{8}xy.
-\frac{5}{16}x^{2}+\frac{13}{8}xy-\frac{5}{16}y^{2}
Combine \frac{1}{4}y^{2} and -\frac{9}{16}y^{2} to get -\frac{5}{16}y^{2}.
\frac{1}{4}\left(x^{2}+2xy+y^{2}\right)-\frac{9}{16}\left(x-y\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+y\right)^{2}.
\frac{1}{4}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}-\frac{9}{16}\left(x-y\right)^{2}
Use the distributive property to multiply \frac{1}{4} by x^{2}+2xy+y^{2}.
\frac{1}{4}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}-\frac{9}{16}\left(x^{2}-2xy+y^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-y\right)^{2}.
\frac{1}{4}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}-\frac{9}{16}x^{2}+\frac{9}{8}xy-\frac{9}{16}y^{2}
Use the distributive property to multiply -\frac{9}{16} by x^{2}-2xy+y^{2}.
-\frac{5}{16}x^{2}+\frac{1}{2}xy+\frac{1}{4}y^{2}+\frac{9}{8}xy-\frac{9}{16}y^{2}
Combine \frac{1}{4}x^{2} and -\frac{9}{16}x^{2} to get -\frac{5}{16}x^{2}.
-\frac{5}{16}x^{2}+\frac{13}{8}xy+\frac{1}{4}y^{2}-\frac{9}{16}y^{2}
Combine \frac{1}{2}xy and \frac{9}{8}xy to get \frac{13}{8}xy.
-\frac{5}{16}x^{2}+\frac{13}{8}xy-\frac{5}{16}y^{2}
Combine \frac{1}{4}y^{2} and -\frac{9}{16}y^{2} to get -\frac{5}{16}y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}