Solve for x
x=3
Graph
Share
Copied to clipboard
\frac{1}{4}x+\frac{1}{4}=\frac{1}{5}\left(8-x\right)
Use the distributive property to multiply \frac{1}{4} by x+1.
\frac{1}{4}x+\frac{1}{4}=\frac{1}{5}\times 8+\frac{1}{5}\left(-1\right)x
Use the distributive property to multiply \frac{1}{5} by 8-x.
\frac{1}{4}x+\frac{1}{4}=\frac{8}{5}+\frac{1}{5}\left(-1\right)x
Multiply \frac{1}{5} and 8 to get \frac{8}{5}.
\frac{1}{4}x+\frac{1}{4}=\frac{8}{5}-\frac{1}{5}x
Multiply \frac{1}{5} and -1 to get -\frac{1}{5}.
\frac{1}{4}x+\frac{1}{4}+\frac{1}{5}x=\frac{8}{5}
Add \frac{1}{5}x to both sides.
\frac{9}{20}x+\frac{1}{4}=\frac{8}{5}
Combine \frac{1}{4}x and \frac{1}{5}x to get \frac{9}{20}x.
\frac{9}{20}x=\frac{8}{5}-\frac{1}{4}
Subtract \frac{1}{4} from both sides.
\frac{9}{20}x=\frac{32}{20}-\frac{5}{20}
Least common multiple of 5 and 4 is 20. Convert \frac{8}{5} and \frac{1}{4} to fractions with denominator 20.
\frac{9}{20}x=\frac{32-5}{20}
Since \frac{32}{20} and \frac{5}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{20}x=\frac{27}{20}
Subtract 5 from 32 to get 27.
x=\frac{27}{20}\times \frac{20}{9}
Multiply both sides by \frac{20}{9}, the reciprocal of \frac{9}{20}.
x=\frac{27\times 20}{20\times 9}
Multiply \frac{27}{20} times \frac{20}{9} by multiplying numerator times numerator and denominator times denominator.
x=\frac{27}{9}
Cancel out 20 in both numerator and denominator.
x=3
Divide 27 by 9 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}