Evaluate
\frac{19c}{8}-\frac{1}{4}
Expand
\frac{19c}{8}-\frac{1}{4}
Share
Copied to clipboard
\frac{1}{4}\times 8c+\frac{1}{4}\left(-1\right)+\frac{3}{8}c
Use the distributive property to multiply \frac{1}{4} by 8c-1.
\frac{8}{4}c+\frac{1}{4}\left(-1\right)+\frac{3}{8}c
Multiply \frac{1}{4} and 8 to get \frac{8}{4}.
2c+\frac{1}{4}\left(-1\right)+\frac{3}{8}c
Divide 8 by 4 to get 2.
2c-\frac{1}{4}+\frac{3}{8}c
Multiply \frac{1}{4} and -1 to get -\frac{1}{4}.
\frac{19}{8}c-\frac{1}{4}
Combine 2c and \frac{3}{8}c to get \frac{19}{8}c.
\frac{1}{4}\times 8c+\frac{1}{4}\left(-1\right)+\frac{3}{8}c
Use the distributive property to multiply \frac{1}{4} by 8c-1.
\frac{8}{4}c+\frac{1}{4}\left(-1\right)+\frac{3}{8}c
Multiply \frac{1}{4} and 8 to get \frac{8}{4}.
2c+\frac{1}{4}\left(-1\right)+\frac{3}{8}c
Divide 8 by 4 to get 2.
2c-\frac{1}{4}+\frac{3}{8}c
Multiply \frac{1}{4} and -1 to get -\frac{1}{4}.
\frac{19}{8}c-\frac{1}{4}
Combine 2c and \frac{3}{8}c to get \frac{19}{8}c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}