Evaluate
\frac{20\delta _{0}}{21}
Expand
\frac{20\delta _{0}}{21}
Share
Copied to clipboard
\frac{\frac{1}{4}\delta _{0}\times \frac{14+2}{7}}{\frac{3}{5}}
Multiply 2 and 7 to get 14.
\frac{\frac{1}{4}\delta _{0}\times \frac{16}{7}}{\frac{3}{5}}
Add 14 and 2 to get 16.
\frac{\frac{1\times 16}{4\times 7}\delta _{0}}{\frac{3}{5}}
Multiply \frac{1}{4} times \frac{16}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{16}{28}\delta _{0}}{\frac{3}{5}}
Do the multiplications in the fraction \frac{1\times 16}{4\times 7}.
\frac{\frac{4}{7}\delta _{0}}{\frac{3}{5}}
Reduce the fraction \frac{16}{28} to lowest terms by extracting and canceling out 4.
\frac{\frac{4}{7}\delta _{0}\times 5}{3}
Divide \frac{4}{7}\delta _{0} by \frac{3}{5} by multiplying \frac{4}{7}\delta _{0} by the reciprocal of \frac{3}{5}.
\frac{\frac{4\times 5}{7}\delta _{0}}{3}
Express \frac{4}{7}\times 5 as a single fraction.
\frac{\frac{20}{7}\delta _{0}}{3}
Multiply 4 and 5 to get 20.
\frac{20}{21}\delta _{0}
Divide \frac{20}{7}\delta _{0} by 3 to get \frac{20}{21}\delta _{0}.
\frac{\frac{1}{4}\delta _{0}\times \frac{14+2}{7}}{\frac{3}{5}}
Multiply 2 and 7 to get 14.
\frac{\frac{1}{4}\delta _{0}\times \frac{16}{7}}{\frac{3}{5}}
Add 14 and 2 to get 16.
\frac{\frac{1\times 16}{4\times 7}\delta _{0}}{\frac{3}{5}}
Multiply \frac{1}{4} times \frac{16}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{16}{28}\delta _{0}}{\frac{3}{5}}
Do the multiplications in the fraction \frac{1\times 16}{4\times 7}.
\frac{\frac{4}{7}\delta _{0}}{\frac{3}{5}}
Reduce the fraction \frac{16}{28} to lowest terms by extracting and canceling out 4.
\frac{\frac{4}{7}\delta _{0}\times 5}{3}
Divide \frac{4}{7}\delta _{0} by \frac{3}{5} by multiplying \frac{4}{7}\delta _{0} by the reciprocal of \frac{3}{5}.
\frac{\frac{4\times 5}{7}\delta _{0}}{3}
Express \frac{4}{7}\times 5 as a single fraction.
\frac{\frac{20}{7}\delta _{0}}{3}
Multiply 4 and 5 to get 20.
\frac{20}{21}\delta _{0}
Divide \frac{20}{7}\delta _{0} by 3 to get \frac{20}{21}\delta _{0}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}