Solve for k (complex solution)
\left\{\begin{matrix}\\k=\frac{-2\sqrt{15\gamma ^{2}+48\gamma +276}-4\gamma -24}{11}\text{, }&\text{unconditionally}\\k=\frac{2\sqrt{15\gamma ^{2}+48\gamma +276}-4\gamma -24}{11}\text{, }&\gamma \neq -10\text{ and }\gamma \neq 26\end{matrix}\right.
Solve for γ (complex solution)
\gamma =\frac{\sqrt{15k-12}\sqrt{k+4}}{2}+k
\gamma =-\frac{\sqrt{5k-4}\sqrt{3k+12}}{2}+k\text{, }k\neq 8
Solve for k
\left\{\begin{matrix}\\k=\frac{-2\sqrt{15\gamma ^{2}+48\gamma +276}-4\gamma -24}{11}\text{, }&\text{unconditionally}\\k=\frac{2\sqrt{15\gamma ^{2}+48\gamma +276}-4\gamma -24}{11}\text{, }&\gamma \neq 26\text{ and }\gamma \neq -10\end{matrix}\right.
Solve for γ
\left\{\begin{matrix}\gamma =-\frac{\sqrt{15k^{2}+48k-48}}{2}+k\text{; }\gamma =\frac{\sqrt{15k^{2}+48k-48}}{2}+k\text{, }&k\geq \frac{4}{5}\text{ and }k\neq 8\\\gamma =-\frac{\sqrt{15k^{2}+48k-48}}{2}+k\text{; }\gamma =\frac{\sqrt{15k^{2}+48k-48}}{2}+k\text{, }&k\leq -4\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}